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A B S T R A C T

Covalent organic framework TpBD was grafted on stainless steel wire with polydopamine as a linker. The fab-
ricated TpBD bonded stainless steel wire was used as the solid-phase microextraction fiber to extract sixteen
polycyclic aromatic hydrocarbons (PAHs) for subsequent GC-MS/MS determination in grilled meat samples. The
developed method gave the limits of detection (S/N= 3) from 0.02 (pyrene)-1.66 (naphthalene) ng L−1 and
enhancement factors from 1069 (naphthalene)-10879 (benz(a)anthracene). The relative standard deviations
(RSDs) for intra-day and inter-day study are in the range of 2.6%–8.5% and 4.5%–9.4%, respectively. The fiber-
to-fiber RSDs for three parallel prepared fibers were 5.3%–10.0%. One TpBD bonded fiber can stand at least 200
cycles without significant loss of extraction efficiency. The developed method was successfully applied for the
determination of trace PAHs in grilled meat samples with recoveries from 85.1% to 102.8%.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), as a class of teratogenic,
carcinogenic, persistent compounds, contaminate food through en-
vironmental sources (e.g., adsorption by plants from polluted ground-
water, intake by seafood in contaminated zones) or food preparation
(e.g., grilling, roasting, or smoking) [1–3]. Sixteen PAHs (naphthalene
(NaP), acenaphthylene (AcPY), acenaphthene (AcP), fluorene (Flu),
phenanthrene (Phe), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr),
benz(a)anthracene (BaA), chrysene (Chr), benzo(b)uoranthene (BbFL),
benzo(k)uoranthene (BkFL), benzo(a)pyrene (BaP), indeno(1,2,3-c,d)
pyrene (InP), dibenz(a,h)anthracene (DBA) and benzo(g,h,i)perylene
(BghiP)) were defined as priority pollutants by the Environmental
Protection Agency (EPA) due to their toxicity and potential for human
exposure [4]. The allowable maximum residue level (MRL) of BaP is
under 0.2 μg L−1 for bottled water in the United States [5]. The tolerant
maximum level of BaP and the amount of PAH4 (containing BaP, BaA,
BbFL and Chr) in grilled meat set by the European Food Safety Au-
thority are 2 and 12 μg kg−1, respectively [6]. However, the determi-
nation of PAHs is difficult owing to the low concentration in complex

food samples. Therefore, developing a method for enrichment and de-
tection of trace PAHs in food is of great importance.

Solid-phase microextraction (SPME), as a solvent-free extraction
technique, has been used widely for sample pretreatment owing to its
characteristics of integrating sampling, extraction and sampling in-
troduction in one step [7–9]. The structure and properties of the coating
play an important role in SPME. Various types of commercial SPME
coatings are available, such as polyacrylate (PA) [10], poly(di-
methylsiloxane) (PDMS) [11,12], and poly(dimethylsiloxane)/divi-
nylbenzene (PDMS/DVB) [13,14]. However, their performance is not
always satisfactory due to the drawbacks such as short lifetime, in-
sufficient thermal or solvent instability, limited selectivity and fragile
matrix. Hence, the preparation of durable and efficient coating of SPME
is necessary.

Covalent organic frameworks (COFs), featured by large area surface,
good chemical stability, remarkable thermal stability and modifiable
pores [15–19], have been studied widely in many fields, such as ad-
sorption [20], gas storage [21], extraction [22–24], catalysis [25–27],
separation [28,29] and sensing [30]. The aromatic functionalities and
tunable pore size structures make COFs potential as outstanding coating
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materials of SPME [31–33], especially for the analysis of aromatic
compounds [34].

Herein, we report the use of polydopamine (PDA) as a linker for
covalent bonding of COF TpBD onto stainless steel wire as an efficient
and durable SPME fiber. The prepared fiber is then used to develop a
SPME method for gas chromatography-tandem mass spectrometry (GC-
MS/MS) determination of 16 trace PAHs. The developed method is
applied for the determination of trace 16 PAHs in different grilled meat
samples including mutton shashlik, grilled bacon and grilled chicken
wings with quantitative recovery, wide linearity, excellent reproduci-
bility and large enhancement factors (EFs).

2. Experimental section

2.1. Chemicals and materials

All reagents used were at least of analytical grade, if not other-
wise described. Ultrapure water was obtained from Wahaha Foods
Co., Ltd. (Hangzhou, China). 1,3,5-Triformylphloroglucinol (Tp) was
obtained from Chengdu Tongchuangyuan Pharmaceutical
Technology Co. (Chengdu, China). Benzidine (BD) and mesitylene
were purchased from Aladdin Chemistry Co., Ltd. (Shanghai, China).
Dioxane, acetone, methyl alcohol, N, N-dimethylformamide, tetra-
hydrofuran, hydrochloric acid, nitric acid and glacial acetic acid
were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Dopamine (DA) was obtained from Aladdin
Chemical Co., Ltd. (Shanghai, China). Chromatographic grade acet-
onitrile was bought from Thermo Fisher (Shanghai, China). The
stainless steel wire (SSW) and 5 μL gas chromatograph microsyringes
were purchased from Shanghai High Pigeon Industry and Trade Co.,
Ltd. (Shanghai, China). The mixture standard solution of 16 PAHs in
acetonitrile (200 mg L−1 each) was purchased from Aladdin
Chemistry Co. Ltd. (Shanghai, China). The stock solution of the PAHs
at 20 mg L−1 was prepared in acetonitrile and stored at −20 °C.
100 μg L−1 of the mixture standard solution of the PAHs was ob-
tained by step-by-step dilution of the stock solution with acetonitrile.
Working standard solutions of the PAHs were prepared by diluting
100 μg L−1 acetonitrile solution of PAHs with ultrapure water.

2.2. Instrumentation

The morphology of the coating was characterized on a su1510
scanning electron microscope (SEM, HITACHI, Japan).
Thermogravimetric analysis (TGA) was performed on a Q500 TG in-
strument (TA, USA) from 50 °C to 800 °C in flowing N2 at a heating rate
of 10 °C min−1. The X-ray diffraction spectrometry (XRD) patterns were
recorded on a D2 PHASER (BRUKER AXS GMBH, Germany). Fourier
transform-infrared (FT-IR) spectra were obtained on an IS10 FT-IR
spectrophotometer (Nicolet, USA). The 30 μm PDMS commercial SPME
was obtained from Supelco (Bellefonte, USA). A Bear QSJ-B03H2
blender was used to deal with meat samples (Foushan, China).

2.3. GC-MS/MS and operating condition

A gas chromatograph (GC) system (7890B, Agilent, USA) coupled
with a triple quadrupole mass spectrometer (7000D, Agilent, USA)
was used for separation and quantification. The column used for
separation was Rxi-5MS (30 m × 0.25 mm × 0.25 μm) (Shimadzu,
Japan). The high purity helium was employed as carrier gas at a flow
rate of 1.0 mL min−1. The injector was operated in the pulsed split-
less mode, injection pulse pressure: 25 psi until 0.9 min; purge flow
to split vent: 50 mL min−1 at 4 min; injector temperature, 300 °C. The
oven temperature program was as follows: initial oven temperature,
80 °C, 25 °C min−1 to 180 °C, 10 °C min−1 to 220 °C, 5 °C min−1 to
240 °C (held for 4 min), 2 °C min−1 to 260 °C (held for 2 min), 17 °C
min−1 to 310 °C (held for 3 min). The mass spectrometer parameters

were as follows: interface temperature, 300 °C; source temperature,
320 °C; energy of electron, 70 eV. The mass spectrometer was oper-
ated in the electron ionization (EI) mode with quadrupole tempera-
ture of 150 °C. Analysis was performed in multi-reaction monitoring
(MRM) mode. Other parameters for the determination of 16 PAHs are
shown in Table S1.

2.4. Fabrication of the TpBD bonded SPME fiber

The TpBD was prepared according to Li et al. [35]. The TpBD
bonded fiber was fabricated as follows: the end (3 cm) of a 17-cm
stainless steel wire was etched with aqua regia for 30 min to obtain
rough surface, washed with ultrapure water and dried in air. The etched
fiber was then immersed into the DA solution (50 mg DA, 25 mL Tris-
HCl buffer solution (pH 8.5)) with stirring at 35 °C for 12 h. The re-
sulting PDA modified fiber was gently washed with ultrapure water,
and dried in oven (80 °C) for 12 h. The dried PDA modified fiber was
immersed in the solution of Tris-HCl (4 mL, pH 8.5) containing BD
(83 mg) in a 30 mL Teflon-lined stainless steel bomb in a vacuum oven
(80 °C) for 4 h to graft BD on PDA modified fiber for subsequent TpBD
growth. The BD grafted PDA-modified fiber was dried in oven at room
temperature, and then immersed into a mixture of Tp (63 mg), BD
(83 mg), mesitylene (4 mL), dioxane (4 mL) and acetic acid (9 mol L−1,
0.5 mL) in the Teflon-lined stainless steel bomb in vacuum oven at
120 °C for 48 h to obtain TpBD bonded fiber. Finally, the TpBD bonded
fiber was immersed in acetone for 3 days to remove residual ligands and
dried in an oven at room temperature. In this way, the TpBD bonded
SPME fiber was obtained.

2.5. Collection and pretreatment of real samples

The grilled meat samples were collected from local supermarkets,
and homogenized with a blender. 2.0 g of the homogenized meat was
mixed with 10 mL of acetonitrile in a 50 mL centrifuge tube. The mix-
ture was ultrasonicated for 20 min to extract the PAHs, and centrifuged
at 10000 rpm for 10 min to collect the supernatant. The residual meat
was extracted with another 10 mL of acetonitrile to obtain the second
supernatant in the same way. The total collected supernatant (ca.
20 mL) was concentrated to dryness with flowing N2. The residues were
dissolved in 1 mL acetonitrile and diluted 1000 times with ultrapure
water for SPME experiments.

2.6. SPME procedures

The prepared TpBD bonded SPME fiber was conditioned at GC in-
jection port at 310 °C until the baseline was stable before extraction.
The conditioned TpBD bonded fiber was immersed into the standard
solution or the sample solution in a sample vial at 40 °C for 50 min
SPME under stirring (600 rpm). The TpBD bonded fiber was then re-
moved from the vial and inserted into the GC inlet for GC-MS/MS
analysis.

3. Results and discussion

3.1. Fabrication and characterization of the TpBD bonded SPME fiber

Fig. 1 shows a schematic fabrication of TpBD bonded SPME fiber.
Aqua regia etching of the bare stainless steel wire led to the rough
surface of the stainless steel wire (Fig. 2A and B). PDA was introduced
to chelate the metal ions on the rough surface of the etched stainless
steel wire to provide functional group for further modification. The
successful PDA modification was evidenced from the formation of
uniform particles on the surface of stainless steel wire (Fig. 2C and D),
and the presence of the PDA characteristic peaks at 3500-3100 cm−1

for the O-H of the phenolic hydroxyl group and the N-H of amino and
imino group and 1604 cm−1 for the C=C of benzene ring, and
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1512 cm−1 for the N-H in FT-IR spectra (Fig. 3B (c)). BD was grafted on
the PDA modified stainless steel wire via Michael addition/Schiff base
reaction [36], as confirmed by the formation of a new peak at
1654 cm−1 corresponded to the C=N band between BD and the PDA on
the modified stainless steel wire in the FT-IR spectra (Fig. 3B (b)). In
situ growth of TpBD was realized by inserting the BD grafted stainless
steel wire into a mixture of Tp, BD, mesitylene, dioxane and acetic acid
under certain conditions. The as-grown TpBD shows 2D sheet-like
structures (Fig. 2E and F), and characteristic TpBD peaks at 3.3° and
5.8° in the XRD pattern (Fig. 3A (a)) [37], and those of C=N
1654 cm−1, C=C 1571 cm−1, 1450 cm−1 and C-N 1288 cm−1 in the
FT-IR spectra (Fig. 3B (a)). The above results confirm the successful
grafting of TpBD on the surface of stainless steel wire. The cross-section
image shows about 5 μm thick TpBD coating on the stainless steel wire
(Fig. 3D). The TpBD coating is thermally stable until 380 °C (Fig. 3C),
which is appropriate for application in GC analysis.

3.2. Optimization of extraction parameters

The effects of various extraction parameters including stirring rate,
concentration of NaCl, extraction time and desorption time were in-
vestigated in detail.

3.2.1. Effect of stirring rate
The effect of stirring rate was studied at the speed range of

400–800 rpm (Fig. 4A). The peak areas of PAHs significantly increased
with stirring rate up to 600 rpm, then gradually levelled off. Generally,
fast stirring accelerates the diffusion of the analytes from sample so-
lution to the SPME fiber, which is beneficial for adsorption equilibrium.
However, too high stirring speed would cause whirlpool around the
SPME fiber, thus unfavorable influence on the stability of SPME. So, the
600 rpm was chosen for the following studies.

3.2.2. Effect of ionic strength
The effect of ionic strength was investigated by changing the con-

centration of NaCl from 0 to 30% (w/v) (Fig. 4B). The peak areas of eight
low-molecular-mass PAHs increased with ionic strength up to 30% due to
the decrease of the solubility of nonpolar compounds in the aqueous phase.
However, opposite behaviors were observed for the high-molecular-mass
PAHs, the extraction efficiency decreased sharply as ionic strength increased
due to the increased viscosity of the solution and the decreased diffusion
rate of the analytes. Therefore, no salt was added for SPME.

3.2.3. Effect of extraction time and desorption time
The effect of extraction time was evaluated from 20 to 60 min

(Fig. 4C). The peak areas of PAHs increased with extraction time up to
50 min, then did not change with further increase of extraction time,
indicating that 50 min was sufficient for adsorption equilibrium. Stu-
dies on the effect of desorption time, 4 min was enough for quantitative
desorption of the PAHs from SPME fiber (Fig. 4D).

3.3. Durability of the TpBD bonded SPME fiber

Extending lifetime of the SPME fiber is a crucial way to overcome
the drawback of commercial SPME coating. The developed TpBD
bonded SPME fiber can stand at least 200 cycles of adsorption/deso-
rption without significant loss of the extraction efficiency (Fig. S1). In
comparison with other reported fibers (Table 2) and conventional
commercial fibers (40–100 cycles of adsorption/desorption) [34], the
present TpBD bonded SPME fiber offered much longer lifetime due to
the high thermal and chemical stability of TpBD and the covalent bond
between PDA and TpBD (Fig. 3C, Fig. S2-S3). The high thermal stability
of the TpBD bonded fiber also allows the use of high temperature (up to
380 °C) for efficient desorption of the PAHs with high boiling points
from the fiber whereas commercial PDMS SPME fiber (30 μm) only
permits the maximum temperature of 280 °C for desorption.

Fig. 1. Schematic illustration for fabricating the TpBD bonded SPME fiber.

Fig. 2. SEM images of the etched fiber (magnifications of A 300 × , B 5000 × ),
the PDA coated SPME fiber (magnifications of C 300 × , D 5000 × ) and the
TpBD bonded SPME fiber (magnifications of E 300 × , F 5000 × ).
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Fig. 3. (A) XRD patterns: (a) the PDA-TpBD
coating, (b) TpBD and (c) PDA; (B) FT-IR
spectra: (a) the PDA-TpBD coating, (b) PDA-
BD and (c) PDA; (C) TGA curves of the
TpBD coating (red) and the as-prepared
TpBD (black); (D) SEM image of the cross-
section of the TpBD bonded SPME fiber.
(For interpretation of the references to
colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 4. Effect of experimental conditions on
the extraction efficiency for 100 ng L−1

PAHs: (A) stirring rate (conditions: extrac-
tion time, 30 min; desorption time, 5 min;
extraction temperature, 40 °C; no salt addi-
tion); (B) concentration of NaCl (conditions:
stirring rate, 600 rpm; extraction time,
30 min; desorption time, 5 min; extraction
temperature, 40 °C); (C) extraction time
(conditions: stirring rate, 600 rpm; deso-
rption time, 5 min; extraction temperature,
40 °C; no salt addition); (D) desorption time
(conditions: stirring rate, 600 rpm; extrac-
tion time, 50 min and extraction tempera-
ture, 40 °C; no salt addition).
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3.4. Method performance

The analytical performance of our developed method are summar-
ized in Table 1, including linear range (LR), coefficient of determination
(R2), limits of quantification (LOQs), limits of detection (LODs), re-
peatability, reproducibility and the EFs. The developed method gave a

linear range of 2–200 ng L−1 for the PAHs with R2 from 0.9914 to
0.9993. The LODs (S/N= 3) and LOQs (S/N= 10) were in the range of
0.02–1.66 ng L−1 and 0.07–5.52 ng L−1, respectively.

The repeatability of the single fiber was obtained by using the TpBD
bonded SPME fiber at the concentration of 200 ng L−1 for the each of
PAHs. The relative standard deviations (RSDs) for intra-day and inter-
day study are in the range of 2.6%–8.5% and 4.5%–9.4%, respectively.
In addition, the RSDs of fiber-to-fiber for three parallel prepared fibers
were in the range of 5.3–10.0%. EF is defined as the ratio of sensitivity
after SPME to that obtained by direct injection of 1.0 μL of standard
solution. The developed TpBD bonded SPME fiber gave much larger EFs
(1069–10879) than PDMS fibers, PDA fibers and etched stainless steel
wire (Fig. 5). Moreover, the developed method also gave lower LODs
and larger EFs than other SPME based methods (Table 2).

3.5. Application to real samples

The developed method was applied for the determination of trace
PAHs in grilled meats with the standard additions method for calibra-
tion. Table S2 summarizes the analytical results for the determination
of 16 PAHs in the grilled meats by the developed methods. We found
Acp, FI, Pyr, BkFL, InP and DBA in the range of 0.39 (DBA) - 2.05 (Pyr)
μg kg−1 in the mutton shashlik 1, Acp, Flu, FI, Pyr, BkFL, BbFL and InP
in the range of 0.38 (BbFL) - 1.54 (Pyr) μg kg−1 in the mutton shashlik
2, Acp, Ant, FI, Pyr, BaA, Chr, BkFL, BbFL and InP in the range of 0.37
(BkFL) - 1.54 (Pyr) μg kg−1 in the mutton shashlik 3, NaP, FI, Pyr, BaA,
Chr, BkFL, DBA and BghiP in a range of 0.46 (BaA) - 1.59 (NaP) μg kg−1

in the grilled bacon, and AcPy, Flu, Phe, Ant, FI, Pyr, BaA, Chr, BbFL,
BkFL, BaP and InP in a range of 0.11 (Phe) - 1.03 (AcPy) μg kg−1 in the
grilled chicken wings. Fig. S4 shows the extracted ion chromatograms
of the PAHs for real samples. Recoveries obtained by spiking 5, 25 and
50 μg kg−1 PAHs in real samples, corresponding to spiking 10, 50 and
100 ng L−1 PAHs in working solution, ranged from 85.1 to 102.8% with
the RSDs less than 8.4% (n= 6).

4. Conclusions

In summary, we have fabricated an efficient and durable TpBD
bonded SPME fiber for SPME-GC-MS/MS determination of 16 PAHs in
grilled meat samples with large EFs and low LODs. The large surface
area, suitable pore size of the TpBD and the strong π conjugated
structure between PAHs and TpBD may account for the superior ex-
traction efficiency for PAHs.

Table 1
Analytical performance of the developed method for determination of 16 PAHs.

PAHs Liner
range
(ng
L−1)

R2 LODs
(ng
L−1)

LOQs
(ng
L−1)

EFs RSD (%)

Intra-
day
(n= 6)

Inter-
day
(n= 3)

Fiber to
Fiber
(n= 3)

NaP 2–200 0.9979 1.66 5.52 1069 7.2 7.8 8.6
AcPy 2–200 0.9981 0.25 0.82 1663 8.5 9.4 10.0
Acp 2–200 0.9982 0.19 0.64 1382 7.8 8.2 9.7
Flu 2–200 0.9986 0.12 0.39 2237 6.1 6.6 6.7
Phe 2–200 0.9931 0.12 0.41 2479 6.9 7.2 8.4
Ant 2–200 0.9966 0.04 0.13 3177 6.3 6.7 6.7
FI 2–200 0.9993 0.03 0.09 3782 5.7 6.4 6.8
Pyr 2–200 0.9950 0.02 0.07 5133 4.3 5.8 6.5
BaA 2–200 0.9919 0.03 0.08 10879 6.0 6.3 6.3
Chr 2–200 0.9987 0.03 0.09 8791 5.5 5.7 5.8
BbFL 2–200 0.9968 0.03 0.08 10346 7.5 8.1 8.2
BkFL 2–200 0.9914 0.04 0.12 9638 5.4 5.6 5.7
BaP 2–200 0.9934 0.07 0.23 6783 5.5 5.7 6.0
InP 2–200 0.9946 0.07 0.23 7300 2.9 4.9 5.3
DBA 2–200 0.9977 0.10 0.33 4616 5.4 5.5 6.5
BghiP 2–200 0.9915 0.10 0.34 4130 2.6 4.5 5.5

Conditions: stirring rate, 600 rpm; extraction time, 50 min; desorption time,
4 min; extraction temperature, 40 °C; no salt addition.

Table 2
Comparison of the developed method with other methods.

SPME
coatings

Analytical
technique

LODs (ng L−1) Lifetime
(cycles)

EFs Refs

MOF@MON GC-MS/MS 0.03–0.30 60 1215–3805 [38]
bio-MOF-1 GC-FID 20–5570 – 3104–5980 [39]
MIL-53(Al) GC-MS/MS 0.10–0.73 150 – [40]
Graphene GC-MS 1.52–2.72 – 6354–71872 [8]
UiO-66 GC-MS 0.28–0.60 90 – [41]
TAPB-TMC-

COF
GC-MS 0.29–0.94 – 819–2420 [42]

TpBD GC-MS/MS 0.02–1.66 200 1069–10879 This
work

Fig. 5. Comparison of PDA coated fiber, etched fiber,
PDMS coated fiber and TpBD bonded fiber for the
SPME of the PAHs. Extraction conditions: stirring
rate, 600 rpm; extraction time, 50 min; desorption
time, 4 min; extraction temperature, 40 °C and no
salt addition. For PDMS fiber, the injector tempera-
ture was set at 270 °C due to the recommended
maximum service temperature of 280 °C.
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