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• Irreversible fluorine COF (FCOF) 
bonded probe was fabricated via in-situ 
growth. 

• Chemical bonding of irreversible FCOF 
improved the stability of probe. 

• FCOF based PESI-MS was developed for 
perfluoroalkylcarboxylic acids. 

• Mechanism involves hydrophobic, 
hydrogen bonding and F− F interactions.  
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A B S T R A C T   

Probe nanoelectrospray ionization mass spectrometry (PESI-MS) is practically desirable for rapid and ultra- 
sensitive analysis of trace contaminants in environment, but limited with the stable and selective probe coating. 
Herein, we show the design and preparation of irreversible fluorine-based covalent organic framework (TFPPA-F4) 
covalently bonded probe to couple with ESI-MS (TFPPA-F4-PESI-MS) for direct and rapid determination of per-
fluoroalkyl carboxylic acids (PFCAs) in environmental water. Chemical bonding coating of irreversible crystalline 
TFPPA-F4 not only improved stability of the probe, but also offered accessible multiple interactions including hy-
drophobic, hydrogen bonding and F-F interactions to promote the kinetics and selectivity for PFCAs. The proposed 
TFPPA-F4-PESI-MS realized rapid determination of PFCAs (about 4 min) with low limits of detection of 0.06–0.88 
ng L− 1 and wide linear range of 1–5000 ng L–1 (R2 of 0.9982–0.9998). Recoveries for the spiked lake and pond water 
were 85.9–111.1 %. TFPPA-F4 based probe can maintain the extraction performance after 100 times of extraction. 
This work shows the great potential of the irreversible covalent organic framework based PESI-MS in rapid and 
ultra-sensitive determination of contaminants in environmental samples.  
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1. Introduction 

Protection of water resource is attracting worldwide attention in 
coming century due to the irreplaceability of water resource [22,36]. As 
new emerging contaminant, perfluoroalkyl carboxylic acids (PFCAs), 
typically represented with perfluorooctanoic acid (PFOA), widely exist 
in environmental water owing to their extensive application in various 
industries including aerospace, textile, packaging, automobile, and 
decoration [28,37]. The abundant C-F bonds with high bond energy 
make PFCAs extremely stable and difficult to degrade in the environ-
ment, resulting in the high bioaccumulation and potential risk for or-
ganisms [1,24,5]. Many national regulatory agencies start to monitor 
PFCAs levels in water (Committee POPRC, 2011; Committee JISC, 
2022). A rapid and ultra-sensitive analytical method for PFCAs in 
environmental water remains indispensable and significant for investi-
gation of the environmental exposure level and toxicological effect of 
PFCAs. 

Trace level and serious interference of complex matrix from real 
samples make extraction necessary for determination of PFCAs with the 
primarily performed liquid chromatography-mass spectrometry (LC- 
MS) [8,30]. However, time-consuming and tedious processes of extrac-
tion and separation limit rapid determination of PFCAs with LC-MS [15, 
16,38]. Probe nanoelectrospray ionization mass spectrometry (PESI-MS) 
opens up a new stage for the determination of PFCAs [35,3,7]. Different 
from traditional LC-MS isolated with extraction, PESI-MS can utilize 
charged solvent to achieve on-line elution of enriched target from the 
coating of probe to produce spray ions of target for direct MS analysis 
[23,4,2], offering the opportunity for rapid and ultra-sensitive deter-
mination of PFCAs. However, the coatings of commercial probes 
including polydimethylsiloxane, divinyl-benzene and poly(acrylate) are 
not particularly selective for the enrichment of PFCAs [34]. Novel effi-
cient coatings of probe for PFCAs are still extremely urgent. 

Crystalline porous materials of covalent organic frameworks (COFs), 
linked with organic monomers by covalent bonds, have already shown 
up-and-coming talents as adsorbents for sample pretreatment [9,21,26, 
27,6]. High stability, ordered porosity, designable structure and tunable 
functionality allow COFs to rapidly and selectively interact with ana-
lytes. Thus, development of COFs based PESI-MS is promising in rapid 
and ultra-sensitive analysis of complex samples, but still in preliminary 
stage [10,11,13]. The majority of reported COFs in PESI-MS are 
reversible, and the COFs are physically adhered on the probe, which 
greatly compromises the stability and durability of the COFs based 
probe. 

Herein, we intentionally designed to prepare irreversible COF 
covalently bonded probe to couple with ESI-MS for direct and rapid 
determination of PFCAs in environmental water. An irreversible crys-
talline fluorine-based COF (TFPPA-F4) condensed with 1,3,5-triformyl-
phloroglucinol (TFP) and 2,3,5,6-tetrafluoro-1,4-phenylenediamine 
(PA-F4) was selected and covalently in-situ grown on stainless steel 
probe (SS). The highly ordered structure of TFPPA-F4 with rich F-F, H- 
bonding and hydrophobic interactions would render the TFPPA-F4 
bonded probe superior sensitivity and rapid kinetics for PFCAs, allowing 
TFPPA-F4-PESI-MS for rapid and ultra-sensitive determination of PFCAs 
in real environmental water. This work not only expands the talent of 
irreversible COFs in PESI-MS, but also reveals the great potential of COFs 
based PESI-MS in rapid and ultra-sensitive determination of contami-
nants in environmental samples. 

2. Materials and methods 

2.1. Materials and chemicals 

All chemicals and reagents are commercially available and used 
without further purification. TFP was obtained from Yanshen 

Technology Co., Ltd. (Jilin, China). PA-F4 was bought from Tokoy 
Chemical Industry Co., Ltd. (Shanghai, China). 1,4-Dioxane, mesitylene, 
acetic acid (HAc), tetrahydrofuran (THF), (3-aminopropyl)triethox-
ysilane (APTES), perfluorohexanoic acid (PFHxA), perfluoroheptanoic 
acid (PFHpA), PFOA, perfluorononanoic acid (PFNA), per-
fluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnDA) 
were purchased from Aladdin Chemistry Co., Ltd. (Shanghai, China). 
Perfluoro-n-(1,2,3,4-13C4) octanoic acid (13C4-PFOA) as the internal 
standard compound (IS) was obtained from Wellington laboratories Inc. 
(Guelph (ON), Canada). HPLC grade methanol (MeOH) was gotten from 
Fisher Chemical (Shanghai, China). Ultrapure water was purchased from 
Wahaha Foods Co., Ltd. (Shanghai, China). SS (diameter ca. 0.25 mm, 
length 40 mm) was purchased from Huaer Medical Instrument Co., Ltd 
(Hebei, China). Fused silica capillary (o.d. 0.53 mm) was purchased 
from Yongnian Optic Fiber Plant (Hebei, China). Environmental water 
samples were collected locally and directly used as matrix samples 
without any pretreatment. 

2.2. Instrumentation 

Powder X-ray diffraction (PXRD) patterns were recorded on a D2 
PHASER X-ray diffractometer (Bruker, German) using Cu Kα radiation 
(λ = 1.5418 Å) with a scanning speed of 8◦ min− 1 and a step size of 0.05◦

in 2θ. Scanning electron microscopy (SEM) images were recorded on an 
S-3500 N (Hitachi, Japan) scanning electron microscope. Fourier 
transform infrared (FTIR) spectra were measured on a Nicolet IR IS10 
spectrometer (Nicolet, USA). X-ray photoelectron spectroscopy (XPS) 
exeriments were performed on Axis supra (Kratos, UK). N2 adsorption 
experiments were performed on Autosorb-iQ (Quantachrome, USA) 
using N2 adsorption at 77 K. Mass spectra were obtained on QTRAP 4500 
mass spectrometer (AB SCIEX, USA) equipped with a Nanospray II 
Source (P/N #1004600, AB SCIEX) and analyst software (AB SCIEX, 
USA) to control equipment and acquire data. 

2.3. Preparation of irreversible TFPPA-F4 boned probe 

SS was dipped into aqua regia (depth ca. 1.5 cm) for 1 min, then 
washed with ultrapure water continuously until pH reached 7.0, and 
finally dried at room temperature. The dried etched SS was immersed 
into a mixture of APTES/MeOH/H2O (v/v/v, 4/5/1) solution for 4 h and 
dried in a vacuum oven at 120 ◦C for 1 h to obtain the amino- 
functionalized SS (NH2-SS). The NH2-SS was immersed in the mixture 
of TFP (31.5 mg), PA-F4 (40.5 mg), 6 M HAc (0.1 mL), 1,4-dioxane (0.5 
mL), and mesitylene (0.5 mL) with ultrasonic process for 10 min, 
degassed with freeze-pump-thaw cycles, reacted at 100 ◦C for 3 days, 
washed with THF and finally dried in a vacuum oven for 2 h to obtained 
TFPPA-F4 bonded SS (TFPPA-F4-SS). 

2.4. Procedure of TFPPA-F4-PESI-MS 

All the samples were extracted with TFPPA-F4-SS. Typically, the 
TFPPA-F4-SS was first cleaned with MeOH and ultrapure water, 
immersed into 1 mL of IS (13C4-PFOA) mixed samples with vigorous 
stirring at room temperature for 2 min, then washed with ultrapure 
water for 10 s, and finally moved to a home-made probe holder (Fig. S1). 
The home-made probe holder with a three-dimensional moving platform 
and hand-held digital microscope can finely control and monitor the 
position of the TFPPA-F4-SS (Fig. 1a). The distance between tip of 
TFPPA-F4-SS and MS inlet was controlled as ca. 5 mm. The prepared 
TFPPA-F4-SS also served as ESI emitter. A negative voltage of 3.2 kV, 
supplied by the MS-integrated high-voltage source, was applied to the 
end of COF-probe (Fig. 1b). An MS-integrated syringe pump was used to 
offer solvent as eluent. The eluent of MeOH at a flow rate of 20 µL min− 1 

was pumped to elute the TFPPA-F4 coating on the probe. The produced 

X.-Q. Ran et al.                                                                                                                                                                                                                                 



Journal of Hazardous Materials 455 (2023) 131584

3

charged spray of eluate was directly introduced into MS for data 
acquisition and analysis. The TFPPA-F4-SS could be recycled by vigorous 
stirring with MeOH and water. 

3. Results and discussion 

3.1. Preparation and characterization of irreversible TFPPA-F4 boned 
probe 

Hydrophobic, hydrogen bonding, and F-F interaction are well-known 
for promoting the selectivity of adsorbent for PFCAs [13,14,19]. Or-
dered crystalline structure of adsorbents can facilitate mass transfer of 
analytes to achieve rapid adsorption [18,29]. Accordingly, irreversible 
crystalline COF TFPPA-F4 with rich hydrophobic aromatic rings, H-bond 
acceptors (C––O), H-bond donors (N-H) and F groups was selected as the 
coating to promote the selectivity and kinetics of probe to PFCAs. The 
TFPPA-F4 covalently bonded probe was synthesized via in-situ growth 
approach as shown in Fig. 2. The etched SS was first reacted with APTES 
to prepare NH2-SS. Then, TFP and PA-F4 were further introduced to 
react with NH2-SS via the Schiff-base reaction to obtained TFPPA-F4-SS. 

Formation of TFPPA-F4 and its bonded SS was first confirmed with 
PXRD. The prepared TFPPA-F4 and TFPPA-F4 scraped from TFPPA-F4-SS 
gave an evident peak at 4.7◦ in PXRD pattern, which was in good 
consistent with the simulated PXRD pattern of TFPPA-F4. The simulation 
and refinement gave the specific cell parameters of space group P6/m, a 
= b = 21.8234 Å, c = 3.5031 Å, α = β = 90◦ and γ = 120◦ for TFPPA-F4 

(Fig. 3a-c and Table S1). Irreversible COFs are famous for their superior 
stability [12,25,32,33]. The irreversible keto-enamine COFs can keep 
the crystallinity even in extreme acid/base condition [17]. Hydrolytic 
stability of TFPPA-F4 was examined with the PXRD. No obvious change 
of the PXRD patterns for TFPPA-F4 after immersing in different solvents 
demonstrated the high chemical stability of TFPPA-F4 coating in 1 M 
NaOH/HCl, water and MeOH (Fig. 3d). In contrast, the reported 
reversible COF-F-1 for the PFCAs was totally hydrolyzed in 1 M HCl and 
lost the crystallinity in 1 M NaOH, MeOH and H2O, indicating the 
practical potential of irreversible COFs in complex matrix (Fig. S2). 

Change and formation of chemical bonds were verified with FTIR. 
The FTIR spectra of TFPPA-F4 appeared a new shoulder peak at 
1662 cm− 1 (assigned to the stretching band of C––O), which overlapped 
with the strong band of C––C (1593 cm− 1), indicating formation of 
irreversible keto structure. Intense stretching peak at 1010 cm− 1 

revealed abundant C-F in the prepared TFPPA-F4 (Fig. 3e). Evident peak 
of F 1s in wide XPS scanning spectra also conveyed the existence of rich 
F in the TFPPA-F4 (Fig. 3f). 

Optical photograph of TFPPA-F4-SS showed evident orange red 
TFPPA-F4 coating (about 1.5 cm) on the end of SS (Fig. 4a). SEM image 
revealed the sphere-like morphology of TFPPA-F4 (Fig. 4b). Compared 
to NH2-SS, TFPPA-F4-SS offered larger density of TFPPA-F4 particles on 
surface of SS (Fig. 4c and d), further confirming successful bonding of 
TFPPA-F4 with SS. SEM image of cross-section for TFPPA-F4-SS reveals 
about 25 µm thickness of TFPPA-F4 (Fig. 4e). 

N2 adsorption experiment characterized the pore properties of the 
prepared irreversible TFPPA-F4 with the BET surface area of 233 m2 g− 1 

and narrow pore size distribution of 1.0–3.0 nm (Fig. S3 and S4). The 
main pores were distributed at ~1.79 nm. The large surface area and 
suitable pore size of TFPPA-F4 with high chemical stability as well as 
rich aromatic ring, C––O, N-H and F groups make selective extraction of 
PFCAs with TFPPA-F4 reasonable, inspiring us to explore the potential of 
TFPPA-F4 based PESI-MS for the analysis of PFCAs. 

3.2. Development of TFPPA-F4-PESI-MS 

TFPPA-F4-SS was immersed into 1 mL of samples containing six 
PFCAs of PFHxA, PFHpA, PFOA, PFNA, PFDA, and PFUnDA. The PFCAs 
extracted TFPPA-F4-SS (TFPPA-F4-SS-PFCAs) was washed with water, 
then equipped on a home-made probe holder and linked with MS (Fig. 1 
and S1). Eluent of MeOH was set at a flow rate of 20 µL min− 1 under a 
negative voltage of 3.2 kV to elute the extracted PFCAs to produce 
charged spray of PFCAs for direct MS analysis. In order to investigate 
extraction time, signal intensities of PFCAs (Ianalyte) was monitored at 
different time. It was found that the Ianalyte remained no evident change 
after 2 min (Fig. S5). Thus, the extraction time was considered to be 
2 min. Elution profile showed complete elution of PFCAs from TFPPA-F4 
based probe in 1.5 min (Fig. 5a). 

Twenty precursor ion/product ion pairs of the six PFCAs and 13C4- 
PFOA (IS) were monitored in MRM model to qualitatively and quanti-
tatively analyze PFCAs under the optimal conditions in Table S2, Fig. 5 
and Fig. S6. Quantitative performance of the established TFPPA-F4-PESI- 
MS method was assessed via analyzing pure water samples spiked with 
0.5 − 5000 ng L− 1 of PFCAs and 100 ng L− 1 of 13C4-PFOA as IS. Ratio of 
signal intensities for PFCAs and IS (Ianalyte/IIs) was used for construction 
of calibration curve and quantitative calculation. The Ianalyte/IIs linearly 
increased with the concentration of PFCAs from 5 to 5000 ng L− 1 except 
of PFNA and PFDA (1–5000 ng L− 1) with determination coefficients (R2) 
of 0.9982–0.9998 (Table 1 and Fig. S7). Limits of detection (LODs, S/ 
N = 3) and quantification (LOQs, S/N = 10) of TFPPA-F4-PESI-MS for 
the PFCAs were 0.06–0.88 and 0.20–2.92 ng L− 1, respectively (Table 1). 

Fig. 1. (a) Photograph of TFPPA-F4-PESI-MS system with home-made probe 
holder, three-dimensional fine moving platform, hand-held digital microscope, 
syringe pump, and mass spectrometer. (b) Detailed fittings including the home- 
made probe holder, TFPPA-F4-SS served as nanoelectrospray ionization (nESI) 
emitter, MS-integrated high-voltage source and inlet of MS. 
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Fig. 2. Schematic illustration of the preparation of TFPPA-F4-SS for PESI-MS analysis of PFCAs.  

Fig. 3. (a) Unit cell of TFPPA-F4. (b) Pawley refinement of TFPPA-F4. (c) Experimental and simulated PXRD patterns of TFPPA-F4. (d) PXRD patterns of TFPPA-F4 
treated with different solvents. (e) FTIR spectra of TFP, PA-F4 and TFPPA-F4. (f) Wide XPS scanning spectra of TFPPA-F4. 
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Moreover, the developed TFPPA-F4-PESI-MS not only did not require 
separation process of LC, but also facilitated extraction speed for PFCAs 
because of ordered crystalline structure of TFPPA-F4, resulting in shorter 
analysis time of PFCAs (about 4 min) in contrast to traditional LC-MS. 
Compared with many other reported analytical methods for PFCAs, 
our proposed TFPPA-F4-PESI-MS was quite competitive in sample 
throughput and sensitivity (Table S3). 

Maximum molecular sizes of PFHxA-PFUnDA were calculated to be 
smaller than 14.9 Å (Fig. S8), which was covered by the pore size of 
TFPPA-F4, favoring size exclusion effect and pore selection. XPS char-
acterization was further applied to investigate the effect of TFPPA-F4 on 
the extraction of PFCAs. The results showed O 1s, N 1s and F 1s spectra 
of TFPPA-F4 changed after adsorption of PFCAs. XPS peaks of TFPPA-F4 
for N 1s at 404.20 eV, O 1s at 532.83 eV and F 1s at 691.32 eV likely 
resulted from the intramolecular hydrogen bonding. After the adsorp-
tion of PFCAs, binding energies of the aforementioned N 1s, O 1s and F 
1s shifted to 403.53, 533.04 and 690.46 eV, respectively (Fig. S9). These 
changes indicate the formation of hydrogen bonding and F-F interaction 
of TFPPA-F4 and PFCAs [20,31]. 

Repeatability and reproducibility are crucial for probe. Relative 
standard deviations (RSDs) of Ianalyte/IIs for 12 replicate extractions of 
PFCAs with TFPPA-F4-SS were 1.87–4.6 %. The RSDs of Ianalyte/IIs for 
PFCAs with three different TFPPA-F4-SS were 6.7–12.5 % (Table 1). The 
Ianalyte/IIs of 100 ng L− 1 PFCAs gave no significant change after 100 
extraction cycles, indicating long-lasting reusability of the prepared 
TFPPA-F4 bonded probe (Fig. S10). The stability of TFPPA-F4 coating 
was also verified by PXRD and FTIR. Compared with original TFPPA-F4 
coating, the TFPPA-F4 coating after extraction gave no obvious change 
in FTIR spectra and PXRD patterns (Fig. S11 and S12), indicating good 
retention and no hydrolysis of the crystalline structure of TFPPA-F4 
coating after extraction, which was attribute to the irreversibility of 
TFPPA-F4 as well as the chemical bonding of TFPPA-F4 and SS. 

3.3. TFPPA-F4-PESI-MS for real samples 

Practicability of the developed TFPPA-F4-PESI-MS method was 
verified by analyzing environmental water samples. Matrix factor (MF) 
of three environmental water samples was 85.7–114.7 % (Fig. S13), 
indicating that the standard calibration curves obtained with pure water 
are available for quantitative calculation of real samples. PFCAs were 
found in all the three samples. In lake water I, PFHxA, PFHpA, PFOA, 
PFNA and PFDA were found to be 9.4 ± 1.2, 19.0 ± 0.2, 4.5 ± 0.2, 18.2 
± 0.2, and 10.9 ± 0.2 ng L− 1, respectively. In lake water II, PFOA, PFNA 
and PFDA were detected to be 3.4 ± 0.2, 8.3 ± 0.4, and 2.4 
± 0.2 ng L− 1, respectively. In pond water, PFHxA, PFHpA, PFOA, PFNA 
and PFDA was found to be 20.3 ± 1.6, 27.1 ± 1.0, 4.9 ± 0.6, 8.5 ± 0.7, 
and 3.5 ± 0.5 ng L− 1, respectively (Table S4). Recoveries of spiked 
100 ng L− 1 of PFCAs in the three water samples were 82.9–111.1 % 
(Table S4), indicating good accuracy of the TFPPA-F4-PESI-MS for direct 
determination of trace level PFCAs in real samples. 

4. Conclusions 

In summary, an irreversible fluorine-based COF TFPPA-F4 bonded 
probe coupled with ESI-MS was firstly designed for determination of 
PFCAs. The rich hydrophobic aromatic rings, H-bond acceptors/donors 
and F groups of TFPPA-F4 provided the conjunction of hydrophobic, 
hydrogen bonding, and F-F interactions to promote the selectivity of 
TFPPA-F4 for PFCAs. The irreversible TFPPA-F4 with ordered structure 
and great stability further served as probe coating via chemical bonding 
method to render the TFPPA-F4 based probe of PFCAs with fast kinetics 

Fig. 4. (a) Optical photograph of TFPPA-F4-SS. SEM images of (b) TFPPA-F4, 
(c) etched SS, (d) TFPPA-F4-SS and (e) cross-section for the TFPPA-F4-SS.. 

Fig. 5. (a) Elution profile for PFCAs (5 μg L− 1). (b) MS/MS spectra of PFOA and 
13C4-PFOA (The ions labeled with star were selected for quantitation). 
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and high selectivity. Coupled with ESI-MS, the proposed TFPPA-F4-PESI- 
MS achieved rapid and ultra-sensitive analysis of trace PFCAs in envi-
ronmental samples. Moreover, the chemical bonding coating improved 
the stability of the COF based probe. This work not only offers an effi-
cient analytical method for trace PFCAs, but also reveals the great po-
tential of irreversible COFs-PESI-MS technology in rapid and accurate 
determination of pollutants in environmental samples. 

Environmental Implication 

As new emerging contaminant, perfluoroalkyl carboxylic acids 
(PFCAs) widely exist in environmental water. Compared with the 
traditional LC-MS, probe nanoelectrospray ionization mass spectrom-
etry (PESI-MS) opens up a new stage for rapid and sensitive determi-
nation of PFCAs owing to the high selectivity and no LC separation, but 
is limited by the efficient coating of probe. Here, an irreversible fluorine- 
based covalent organic framework (TFPPA-F4) covalently bonded probe 
coupled with ESI-MS (TFPPA-F4-PESI-MS) was designed and prepared 
for direct and rapid determination of PFCAs in environmental water. 
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