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ABSTRACT: Helicobacter pylori (H. pylori) infection is implicated in the
etiology of many diseases. H. pylori eradication by antibiotic therapy is
limited by the extreme acidic environment in the stomach, the undesired
side effect of intestinal commensal bacteria, and the development of drug
resistance. Here, we report a pH-responsive persistent luminescence (PL)
nanozyme (MSPLNP-Au-CB) for in vivo imaging and inactivation of H.
pylori. This PL nanozyme is composed of mesoporous silica (MS)-coated
persistent luminescence nanoparticles (MSPLNP), Au nanoparticles
(AuNP), and chitosan-benzeneboronic acid (CB), taking advantage of
the long PL of PLNP to realize autofluorescence-free imaging, the pH-
activated oxidase- and peroxidase-like nanozyme activity of AuNP, and the
bacterial binding capacity of CB. The MSPLNP-Au-CB nanozyme can
resist the corrosion of gastric acid and exhibit pH-activated dual
nanozyme activity to catalyze bactericidal reactive oxygen species
generation. This multifunctional nanozyme enables targeted imaging and activated deactivation of H. pylori under extreme gastric
acid conditions as well as methicillin-resistant Staphylococcus aureus in common slightly acidic environments, while it has no side
effects on the commensal bacteria and normal cells in normal physiological environments. This work provides a promising PL
nanozyme platform for bioimaging and therapy of bacterial infection under harsh conditions.
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■ INTRODUCTION

Helicobacter pylori (H. pylori), a bacterium with a pronounced
capability of adaptation under extreme environmental stress
conditions, is responsible for life threatening infections, for
instance, peptic ulcer, gastric ulcers, and even gastric cancer.1−4

H. pylori infection is one of the widespread and most persistent
bacterial infections with approximately half of the world’s
population infected. Moreover, H. pylori-induced injury and
inflammation account for approximately 75% of gastric cancer
cases.5 H. pylori is classified as a type I carcinogen by the
International Agency for Cancer Research.6 In fact, H. pylori is
the only bacterium classified as a Class I carcinogen.7 Given its
potential for crucial comorbidity, appropriate and effective
therapy is indispensable to prevent future complications.8

Clarithromycin triple therapy consisting of a proton pump
inhibitor (omeprazole) and two antibiotics (amoxicillin and
clarithromycin/metronidazole) is the standard first-line
therapy.9,10 However, such a triple therapy is greatly challenged
by the undesired killing of commensal bacteria due to its poor
selectivity and development of drug resistance.11,12 The World
Health Organization includes H. pylori on the “high-priority”
list of antibiotic-resistant bacteria.13 In addition, the gastric
milieu with strong acidity poses a dilemma for H. pylori

eradication. To solve these issues, it is necessary to develop a
selective method with minimum antibiotic resistance for killing
H. pylori in the stomach.
Nanozymes are new emerging “antibiotics” with broad-

spectrum sterilization potency. Versatile nanozymes have been
uncovered up to date, such as metal nanomaterials,14−17 metal
oxides/sulfides,18−24 metal−organic frameworks,25−28 and
carbon-based nanomaterials.29−31 These nanozymes exhibit
excellent antibacterial activity by generating reactive oxygen
species (ROS) to destroy the membranes of bacteria via
oxidization. Most of the nanozymes are generally used to
inactivate bacteria under wound infection conditions. How-
ever, there are relatively few nanozymes for killing bacteria in
specific extreme environments, such as H. pylori in a strongly
acidic stomach.32 In this case, the nanozymes should not only
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resist the gastric acid corrosion but also still possess inherent
enzyme-like activity under strong acidic conditions. In
addition, for in vivo applications, nanozymes are in general
toxic to bacteria, mammalian cells, and intestinal commensal
bacteria, with lack of selectivity as ideal antimicrobials. Thus,
target site-directed activation of nanozymes should be
considered to improve the therapeutic efficacy with simulta-
neous reduction of side effects against mammalian cells,
symbiotic probiotics, and the uninfected sites.
Nanozymes normally exhibit peroxidase-like activity under

acidic conditions (pHs 3−6) by preabsorption of H+ and base-
like decomposition of H2O2 to ROS in antibacterial
application.33−35 However, physiological H2O2 is inadequate
to realize efficient chemodynamic therapy.36 Therefore,
nanozymes with oxidase-mimicking activity are needed for
efficient antibacterial application.37 Moreover, a single-modal
antibacterial process of nanozymes is unable to realize effective
antibacterial activity. For these reasons, a visualized nanoplat-
form is necessary for the timely imaging of bacterial infection
and real-time monitoring of the therapy process.
Persistent luminescence nanoparticles (PLNP) are promis-

ing optical materials with long-lasting luminescence after
excitation light is removed, allowing autofluorescence-free
persistent luminescence imaging without the need for constant
in situ excitation.38−40 Cr3+-doped near-infrared (NIR)
emitting PLNP possess an additional advantage of renewability
with tissue-penetrating red LED light, making PLNP-based
luminescence imaging no longer subjected to afterglow
time.41,42 Therefore, Cr3+-doped NIR-emitting PLNP are
ideal to build a visualized nanoplatform for autofluorescence-
free and long-term monitoring bioapplication.
Herein, we report a persistent luminescence (PL) nanozyme

with remarkable pH-activated oxidase- and peroxidase-like
activities for selective killing of H. pylori along with
autofluorescence-free luminescence imaging for real-time
monitoring of therapy. Cr3+-doped zinc gallogermanate
nanoparticles (PLNP) (Zn1.2Ga1.6Ge0.2O4:Cr

3+) are used as
the core of this nanozyme due to their NIR-emitting persistent
luminescence.38 Expanded mesoporous silica (MS) is in situ
formed on the surface of the PLNP to obtain MS-coated PLNP
(MSPLNP) with rich channels for hosting gold nanoparticles
(AuNP). AuNP are then in situ grown on the abundant
channels of MSPLNP to get core−shell MSPLNP-Au with
dual nanozyme activity. Further functionalization with
chitosan-benzeneboronic acid (CB) gives the PL nanozyme
MSPLNP-Au-CB for bacterial targeting. The obtained
MSPLNP-Au-CB integrates the merits of the red LED light-
renewable long PL, pH-activated oxidase/peroxidase-like
activity, and selective bacterial targeting capability. This PL
nanozyme provides targeted luminescence imaging and
effective pH-responsive bacterial inactivation toward H. pylori
in gastric acid conditions and methicillin-resistant Staph-
ylococcus aureus (MRSA) in bacterial infection common acidic
conditions but has a negligible harmful effect on intestinal
symbiotic bacteria and normal cells.

■ RESULTS AND DISCUSSION
Design, Preparation, and Characterization of

MSPLNP-Au. Scheme 1a shows the design of the MSPLNP-
Au nanozyme. The PLNP synthesized via a solvothermal
approach with further sintering43 were used as the core of the
nanoplatform to achieve autofluorescence-free bioimaging with
long-lasting and red-light reversible reactivated NIR persistent

luminescence. The MS shell was formed on the PLNP surface
via cocondensation with TEOS and APTES as silica and
organo-silica precursors44 to improve the bioavailability of the
PLNP and provide sufficient channels for AuNP immobiliza-
tion. The AuNP were immobilized on the channels of
MSPLNP by forming N−Au covalent bonds with auric
chloride ions and subsequent in situ reduction with NaBH4

14

to get MSPLNP-Au with dual artificial enzyme activity.
Meanwhile, the MS shell could serve as the solid support to
protect “naked” AuNP from aggregation and keep the catalyst
active and stable even under harsh conditions.
Scheme 1b illustrates the pH-responsive oxidase- and

peroxidase-like activity of MSPLNP-Au under gastric acid
conditions and abscess conditions. MSPLNP-Au would exhibit
intrinsic oxidase- and peroxidase-like activity under gastric acid
conditions or abscess acid conditions to catalyze ROS
generation and attack the bacterial membrane. However, the
nanozyme activity of MSPLNP-Au would be blocked under
neutral intestinal or healthy tissue conditions, leading to a
negligible harmful effect. Thus, the developed MSPLNP-Au
allows the pH-responsive in vivo activation of nanozyme
activity to kill bacteria.
The NIR-emitting PLNP core gave an average size of 20.7 ±

2.8 nm (N = 100) (Figure S1a,b) with pure cubic spinel
structures of ZnGa2O4 (JCPDS 38-1240) and Zn2GeO4
(JCPDS 25-1018) (Figure S1c). The PLNP solution (0.5 mg
mL−1) gave a 700 nm NIR emission peak under 254 nm
excitation (Figure S1d). The photoluminescence quantum
yield of the PLNP was 33.1%. The PL signal of the PLNP
could be easily captured and reactivated by red LED light
(Figure S2), making it appropriate for autofluorescence-free
long-term and real-time imaging in vivo.
The as-prepared MSPLNP exhibited an excellent core−shell

structure with open pores and functional −NH2 groups
(Figure S3a) and gave the characteristic XRD peaks of the
PLNP (Figure S3b) as well as those of MS with a well-ordered
porous structure (a wide peak near 22° and a low-angle
characteristic peak near 2.8°) (Figure S3b,c). Compared with

Scheme 1. Preparation and Illustration of MSPLNP-Au: (a)
Schematic for the Design and Preparation of MSPLNP-Au
and (b) Illustration of the pH-Responsive Oxidase- and
Peroxidase-like Activity of MSPLNP-Au under Gastric Acid
Conditions and Abscess Conditions
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the PLNP core, MSPLNP gave a well-defined pore size (6.4
nm) with a larger BET surface area (670 m2 g−1) and pore
volume (1.845 cc g−1), providing abundant channels for AuNP
loading (Figure S3d,e).
The FT-IR spectra (Figure S3f) show strong absorption

bands at 1065, 959, and 795 cm−1 for Si−O−Si (antisymmetric
stretching vibration), Si−OH (bending vibration), and Si−O
bonds (symmetrical stretching vibration), respectively, con-
firming the formation of the MS shell. The characteristic peaks
of N−H at 1566 cm−1 (bending vibration) as well as −CH2−
at 2921 and 2850 cm−1 (symmetrical and asymmetrical
stretching vibrations) confirm the functional −NH2 groups
on MSPLNP.
TEM images (Figure 1a,b) and SEM images (Figure 1c)

show that AuNP immobilized on MS were well-dispersed, with

a size of about 2.0 ± 0.5 nm. The lattice plane distance was
about 0.23 nm on average, corresponding to the lattice spacing
of Au(111) planes (inset of Figure 1b). Meanwhile, the
elements Zn, Ga, Ge, and O mainly appeared in the PLNP
core, while the elements Si, O, N, and Au were uniformly
presented in MSPLNP, suggesting the success of the
immobilization of AuNP on MSPLNP (Figure 1c). The Au
4f peaks at 80.7 and 84.3 eV in the X-ray photoelectron spectra
(XPS) also show the successful modification of AuNP on the
MSPLNP surface (Figure 1d,e). The as-prepared MSPLNP-Au
still maintained the easily reactivatable PL property as the
PLNP core (Figure S4a,b), indicating the potential of
MSPLNP-Au for in vivo imaging applications.
The stability of MSPLNP-Au was examined as it would

directly influence the nanozyme activity in gastric acid
conditions. Time-dependent analysis of the hydrodynamic

diameter shows that MSPLNP-Au was stable in a simulated
gastric fluid (SGF)45 over 24 h (Figure S5a). The morphology
and PL performance of MSPLNP-Au did not change after
dispersing in the SGF for 24 h (Figure S5b,c). All the above
results indicate the good stability of MSPLNP-Au in the SGF,
making it suitable for long-term treatment and imaging in
extreme acidic conditions of the stomach.
The oxidase-like activity of MSPLNP-Au was investigated

with 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate.
Figure 2a shows MSPLNP-Au for the catalytic oxidation of
TMB (colorless) to oxTMB (deep blue color with major
absorption peaks at 370 and 652 nm46). In contrast, MSPLNP
did not produce a significant color change, confirming that the
oxidase-like activity came from the intrinsic catalytic property
of AuNP supported on MSPLNP. The oxidase-like activity of
MSPLNP-Au was further revealed with other substrates.
MSPLNP-Au could also catalyze the oxidation of both 2,2′-
azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and
o-phenylenediamine (OPD) as indicated from the UV−vis
spectra and characteristic color changes (Figure 2b).
Furthermore, the oxidase-like activity of MSPLNP-Au was
systematically evaluated under various conditions (different
reaction times, temperatures, and solution pHs) (Figures S6
and S7). The MSPLNP-Au nanozyme exhibited a pH-
dependent oxidase-like property. It is noteworthy that
MSPLNP-Au still maintained its intrinsic oxidase-like activity
(about 76% at pH 1.0 compared to that at pH 3.0) even under
extreme acidic conditions (Figure 2c).
The peroxidase-like activity of MSPLNP-Au was further

evaluated by catalyzing various substrates (TMB, ABTS, and
OPD) in the presence of H2O2 (Figure S8a) under different
conditions (different reaction times, temperatures, and
solution pHs) (Figure S8b−d). All of the results indicate the
intrinsic oxidase/peroxidase-like activity of the as-prepared
MSPLNP-Au, even under extreme acidic conditions, giving it
potential for bioapplications at special gastric acid conditions.
We then compared the nanozyme activity of MSPLNP-Au in

mimicked gastric conditions (SGF) and mimicked neutral
intestinal conditions (simulated intestinal fluid (SIF)).
MSPLNP-Au exhibited both oxidase- and peroxidase-like
activity in the gastric condition (Figure 2d) but no oxidase/
peroxidase-like activity under the intestinal condition (Figure
2e), indicating the pH-responsive activation of the MSPLNP-
Au nanozyme. TMB generated an obvious yellow color quickly
in the SGF in the presence of MSPLNP-Au, further showing
that MSPLNP-Au still possessed the oxidase-like activity in
gastric acid conditions (Figure 2f).
We further investigated the mechanism of the nanozyme

activity of MSPLNP-Au. Various fluorescence probes were
used to monitor the intermediates in the reaction system and
to evaluate the ability of MSPLNP-Au to generate ROS.
Hydroethidine is a selective fluorescence probe for the
superoxide radical (O2

•−) with an oxidization fluorescent
product ethidium and corresponding fluorescence enhance-
ment at 600−650 nm.47 The fluorescence intensity of ethidium
was obviously increased after adding MSPLNP-Au, indicating
the excellent oxidase-like activity of MSPLNP-Au to generate
O2

•− at acidic conditions (Figure S9). The peroxidase-like
activity of MSPLNP-Au makes H2O2 decompose to generate a
hydroxyl radical (•OH).48 So, terephthalic acid was used to
track the formation of •OH because it could capture •OH and
generate 2-hydroxy terephthalic acid with unique fluorescence
enhancement at 435 nm.49 Figure S10 shows that the •OH

Figure 1. Characterization of MSPLNP-Au. (a) TEM image. (b)
High-resolution TEM images. (c) EDS element mapping. (d) XPS
spectra. (e) XPS spectra for Au 4f.
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was mainly generated from the decomposition of H2O2
catalyzed by MSPLNP-Au.
Chitosan-Benzeneboronic Acid (CB) Functionaliza-

tion of MSPLNP-Au. The MSPLNP-Au exhibits excellent
oxidase/peroxidase like activity for the generation of ROS.
However, it is difficult for ROS, with high reactivity but a

limited diffusion distance, to act efficiently on bacteria, thus
restricting their antibacterial activity and biosafety. Therefore, a
combination of enzyme-like activity and a bacterial binding
ability is the key to the increase in the concentration of ROS
around the bacterial membrane and the reduction of the
nonspecific side effects to normal cells. Boronic acid, a bacterial

Figure 2. Characterization of the MSPLNP-Au nanozyme. (a) UV−vis spectra of TMB, MSPLNP-Au, and MSPLNP-Au+TMB in acetate buffer
(pH 4.0, 30 min incubation). (b) MSPLNP-Au catalyzed oxidation of TMB (1), ABTS (2), and OPD (3) with the corresponding color changes.
(c) pH-responsive oxidase-like activity of MSPLNP-Au. Data were calculated as means ± s.d. (n = 3). Oxidase- and peroxidase-like activity of the
MSPLNP-Au in SGF (d) and SIF (e). (f) MSPLNP-Au catalyzed oxidation of TMB in the SGF.

Figure 3. CB synthesis and MSPLNP-Au-CB targeted inactivation of bacteria. (a) Illustration of CB synthesis and MSPLNP-Au-CB
functionalization. (b) Schematic of the MSPLNP-Au-CB nanozyme for targeted killing of H. pylori in the gastric environment without nonspecific
damage to intestinal symbiotic bacteria in the intestinal environment. (c) Schematic for MRSA targeted inactivation based on the MSPLNP-Au-CB
nanozyme.
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binding molecule, can reversibly bind to peptidoglycans on the
bacterial cell wall to realize the specific capture of target
bacteria.32 To achieve H. pylori-targeted adherence, we
synthesized chitosan-benzeneboronic acid (CB) through the
chemical bonding between the amine groups of chitosan and
the carboxylic groups of 4-carboxyphenylboronic acid (Figure
3a). The synthesized CB was then characterized by 1H NMR
(Figure S11) and FT-IR (Figure S12). CB functionalization of
MSPLNP-Au was achieved via electrostatic adsorption of the
CB molecule on MSPLNP-Au and characterized by FT-IR
spectra and the zeta potential (Figure S13). CB functionaliza-
tion did not lead to the significant change of the PL property
(Figure S14) and the nanozyme activity of MSPLNP-Au in the
SGF (Figure S15). The prepared MSPLNP-Au-CB showed
typical Michaelis−Menten kinetics and a pH-dependent
enzyme-like property (Figure S16). In addition, MSPLNP-
Au-CB also possessed an intrinsic oxidase-like activity even in a
microaerobic atmosphere as indicated by the Km and Vmax
values (Tables S1 and S2).
The obtained MSPLNP-Au-CB nanozyme possessed a red

LED light-renewable long PL, pH-activated oxidase/perox-
idase-like activity, and selective bacterial binding capability,
being promising for selective imaging and killing of H. pylori
and common resistant bacteria. In gastric acid conditions,
MSPLNP-Au-CB would target H. pylori, and its nanozyme
activity would be activated to catalyze ROS formation, getting
targeted PL imaging and high local ROS concentration for
effective H. pylori inactivation. However, the nanozyme activity
of MSPLNP-Au-CB would be suppressed after entering the
intestinal environment, avoiding nonspecific damage to
intestinal commensal bacteria (Figure 3b). Meanwhile, because
MSPLNP-Au-CB still maintained part of the effective nano-
zyme activity in slightly acidic conditions, its nanozyme activity
would also be activated for targeted PL imaging and killing of
bacteria in common bacterial infection acidic environments.
Also, the nanozyme activity of MSPLNP-Au-CB would be
suppressed under normal tissue conditions, avoiding non-
specific targeting of injury and allowing for its biocompatibility
with normal tissues (Figure 3c).
pH-Responsive MSPLNP-Au-CB for Targeted PL

Imaging and Killing of H. pylori. We then demonstrated
the performance of MSPLNP-Au-CB targeted PL imaging and
killing of H. pylori. The antibacterial capability of MSPLNP-
Au-CB against H. pylori was first evaluated in vitro. MSPLNP-
Au-CB exhibited efficient inhibition to the proliferation of H.
pylori in a dose-dependent manner (Figure 4a). In addition,
MSPLNP-Au-CB gave different bactericidal activities at pH 2.0
and pH 7.0: notable bacterial killing activity against H. pylori
under acidic conditions (pH 2.0) but no bactericidal activity
under normal tissue conditions (pH 7.0) (Figure 4b,c).
The performance of MSPLNP-Au-CB for targeting H. pylori

was further demonstrated in vitro. Scanning electron
microscopy (SEM) images show that H. pylori showed an
intact cell wall and a typically spiral morphology before
MSPLNP-Au-CB treatment but was completely ruptured with
content leakage after incubation and surface attachment with
MSPLNP-Au-CB (Figure 4d). The interaction between
MSPLNP-Au-CB and H. pylori was observed on a laser
confocal scanning microscope (LCSM). Incubation with
MSPLNP-Au-CB led to a significant red luminescence on
the bacteria from the inherent luminescence of the PLNP core
(Figure 4e), indicating a superior bacterial targeting ability of
MSPLNP-Au-CB.

The cytotoxicity of MSPLNP-Au-CB was primarily
evaluated via MTT assay. MSPLNP-Au-CB exhibited negli-
gible inhibition to the proliferation of 3T3 cells, with the cell
viability remaining over 85% even at over threefold of the
effective bactericidal concentration (100 μg mL−1) (Figure 4f).
On the other hand, Bif idobacterium and Lactobacillus reuteri,
two of the important intestinal symbiotic bacteria, were used to
evaluate the harmful effect of MSPLNP-Au-CB on the
intestinal environment. Compared with the control group,
MSPLNP-Au-CB gave no antibacterial activity against
Bif idobacterium and Lactobacillus reuteri, showing that
MSPLNP-Au-CB exhibited no nanozyme activity under
intestinal conditions and no obvious side effects on intestinal
symbiotic bacteria (Figure 4g and Figure S17). All these results
indicate the effective pH-responsive bacterial inactivation of
the MSPLNP-Au-CB nanozyme toward bacteria under
bacterial infection acidic conditions but superior biocompat-
ibility toward intestinal symbiotic bacteria and normal cells
under normal physiological conditions.

Figure 4. Performance of MSPLNP-Au-CB for targeted PL imaging
and killing of H. pylori. (a) Relative H. pylori viability after incubating
with different concentrations of MSPLNP-Au-CB. Data were
calculated as means ± s.d. (n = 3). (b) Relative bactericidal activity
of MSPLNP-Au-CB (30 μg mL−1) under different conditions. Data
were calculated as means ± s.d. (n = 3). P values were calculated by
the Student’s two-sided test (***p < 0.001). (c) Photos of H. pylori
colonies under different conditions. (d) SEM images of H. pylori in
the presence or absence of MSPLNP-Au-CB. Scale bar: 1.0 μm. (e)
Representative LCSM images for H. pylori treated with MSPLNP-Au-
CB. Scale bar: 10 μm. (f) Cytotoxicity assay of PLNP, MSPLNP,
MSPLNP-Au, and MSPLNP-Au-CB. Data were calculated as means ±
s.d. (n = 5). (g) Relative antibacterial activity of MSPLNP-Au-CB
against intestinal symbiotic bacteria (MSPLNP-Au-CB, 100 μg
mL−1). Data were calculated as means ± s.d. (n = 6).
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The performance of MSPLNP-Au-CB for in vivo targeting,
imaging and, inactivation of H. pylori was then investigated
with an H. pylori-infected mouse model. Each mouse received
gavage with H. pylori (109 CFU mL−1) once daily for
consecutive 4 days (Figure 5a). After 1 week of infection,

bacterial burden in the mouse stomach was quantified to be 2.0
× 106 CFU per gram of the stomach tissue (Figure S18).
Furthermore, the observation of H. pylori in the infected
mouse gastric mucosa slice by Gram staining also demon-
strated the successful establishment of the H. pylori-infected
mouse model (Figure S19). Then, PL imaging of MSPLNP-
Au-CB was visualized to monitor the retention of MSPLNP-
Au-CB in the stomach of the mouse model (Figure 5b).
Compared with the MSPLNP group, the luminescence
imaging of the MSPLNP-Au-CB group in the mouse stomach
was gradually clear at 4 h after oral gavage and continued until
day 3, realizing a long retention time compared with the
normal gastric emptying time of mice.50 To further confirm the
retention of MSPLNP-Au-CB in the stomach of the mouse
model, the mouse stomach was excised at day 6 after
intragastric administration. The luminescence signal in the
excised stomach also indicates the effective retention of
MSPLNP-Au-CB in the stomach (Figure 5c.).

H. pylori-infected mouse models were randomly divided into
three treatment groups (the PBS group, MSPLNP-Au-CB
therapy group, and antibiotic triple therapy OAC group) as
well as a blank control group of healthy mice. The mice in the
MSPLNP-Au-CB group received only one time gavage of
MSPLNP-Au-CB. The mice in the OAC group received
antibiotics once daily for 6 consecutive days (first received
omeprazole 30 min before amoxicillin and clarithromycin oral
gavage). The Gram staining images of gastric tissues in the
MSPLNP-Au-CB group show no obvious bacterial presence
after the 6 day treatment, similar to those in the OAC group
and the blank control group (Figure 5d). However, a collection
of bacteria still existed in the gastric tissue of mice in the PBS
group, indicating that the MSPLNP-Au-CB nanozyme was
activated in the stomach and exhibited effective H. pylori killing
in vivo.
We further explored the harmful effect of MSPLNP-Au-CB

during in vivo treatment. No obvious changes in the body
weight of mice were observed during MSPLNP-Au-CB
treatment (Figure S20), indicating the low toxicity of
MSPLNP-Au-CB. The hematoxylin−eosin (H&E) staining
images of gastric tissues of mice in the MSPLNP-Au-CB group
show no obvious damage and inflammation with a clear
arrangement of epithelial cells, similar to the gastric sample of
normal mice (Figure S21). In addition, almost no lumines-
cence of MSPLNP-Au-CB was observed in other visceral
organs except the stomach, demonstrating superior biocompat-
ibility of intragastric administration with MSPLNP-Au-CB
(Figure 5c and Figure S22). Most importantly, the side effect
of MSPLNP-Au-CB on the intestinal symbiotic microbe was
also evaluated. The intestinal microbial richness level of mice
in the MSPLNP-Au-CB group was consistent with the mice in
the normal group, while the antibiotic therapy OAC group
significantly reduced the richness level due to the undesired
side effect of antibiotics (Figure 6a). The beta diversity analysis
of the intestinal microflora further demonstrated similar
microbial community composition of the mice treated with
MSPLNP-Au-CB and the normal mice but a significant
difference from the mice treated with the OAC antibiotic
(Figure 6b). In addition, the heatmap analysis of the intestinal
contents showed similar species abundance of samples in the
MSPLNP-Au-CB group and the normal group on a genus level
but obviously different species abundance in the OAC group
with the level downward revision of most of the bacterial
genera (Figure 6c). The results indicate that the pH-responsive
PL nanozyme could only be activated in the gastric acid
microenvironment for selective targeting and inactivation of H.
pylori in vivo without damage toward normal tissues and
intestinal symbiotic bacteria.

pH-Responsive MSPLNP-Au-CB for Targeted PL
Imaging and Killing of E. coli, S. aureus, and MRSA.
Since MSPLNP-Au-CB still maintains effective nanozyme
activity in a slightly acidic environment, it should also keep the
capability to kill Escherichia coli (E. coli), Staphylococcus aureus
(S. aureus), and methicillin-resistant Staphylococcus aureus
(MRSA) under common acidic conditions of bacterial
infection (PBS, pH 5.5). MSPLNP-Au-CB at no more than
50 μg mL−1 suppressed more than 99% of the studied three
bacterial strains at pH 5.5 (30 μg mL−1 MSPLNP-Au-CB
suppressed 99.2% E. coli, 96.5% S. aureus, and 98.4% MRSA)
(Figure 7a−e). However, MSPLNP-Au-CB gave no significant
antibacterial capability in a normal physiological environment
(pH 7.0) (Figure 7d,e). The interaction between MSPLNP-

Figure 5. Performance of MSPLNP-Au-CB for in vivo targeting,
imaging, and inactivation of H. pylori. (a) Schedule for PL imaging
and treatment in mice, including H. pylori inoculation, infection
development, and therapy before harvest. (b) Time-dependent PL
images of the H. pylori-infected mouse model after MSPLNP-Au-CB
gavage. (c) Ex vivo PL images of major organs excised from mice on
day 6 after MSPLNP-Au-CB gavage. (d) Gram staining of the gastric
mucosa slice from the mice in PBS, MSPLNP-Au-CB, OAC, and
normal groups. Red arrows point to H. pylori. The scale bar is 50 μm.
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Au-CB and the studied three bacterial strains was observed on
an LCSM. MSPLNP-Au-CB led to significant red lumines-
cence on the bacteria, indicating an excellent targeting ability
of MSPLNP-Au-CB to the bacterial strains (Figure 7f).
Moreover, the morphology of the bacterial strains was directly
visualized by SEM before and after treating with MSPLNP-Au-
CB. Bacterial strains showed an integrated and smooth surface
before incubating with MSPLNP-Au-CB. However, MSPLNP-
Au-CB treatment led to significant damage of the bacteria cells
of E. coli, S. aureus, and MRSA with the wrinkled and ruptured
cell wall (Figure 7g). These results show the capability of
MSPLNP-Au-CB for pH-responsive and targeted bacterial
killing in common acidic environments of bacterial infection.
In view of the excellent antibacterial capability of MSPLNP-

Au-CB against E. coli, S. aureus, and MRSA in vitro, an MRSA-
infected subcutaneous abscess mouse model was established to
further evaluate the performance of MSPLNP-Au-CB for in
vivo targeting, imaging, and therapy (Figure S23). The
treatment schedule of MSPLNP-Au-CB is illustrated in Figure
8a. The subcutaneous abscess mouse model was intravenously
injected with MSPLNP and MSPLNP-Au-CB. Figure 8b shows
time-dependent luminescence accumulation in the abscess site
of the mice in the MSPLNP-Au-CB group. The luminescence
signal in the abscess area appeared at 1 h after injection,
gradually became significant, and reached the maximum at day
2. Afterward, the luminescence signal gradually diminished and
completely disappeared at day 6. In contrast, the luminescence
signal was hard to see in the abscess region of the mice in the
MSPLNP group at all time points. These results show that
MSPLNP-Au-CB had good in vivo targeted PL imaging of
MRSA infection.
The MRSA-infected mice were randomly divided into three

treatment groups (the PBS group, MSPLNP group, and
MSPLNP-Au-CB group) with normal mice as a blank control
group for comparison. Mice in the three treatment groups were
intravenously injected with PBS, MSPLNP, and MSPLNP-Au-
CB. The abscess and inflammation on the skin in the
MSPLNP-Au-CB group disappeared at day 8 but still remained

on the skin of the mice in the MSPLNP group and the PBS
group (Figure 8c). The quantitative bacterial colonies were
significantly reduced in the MSPLNP-Au-CB group after the
10 day treatment, indicating great recovery from infection
(Figure 8d). H&E staining shows obvious scab and massive
inflammatory cell infiltration in the abscess skin of the mice in
the MSPLNP group and the PBS group (Figure 8e). Like the
blank control group, the skin of the mice in the MSPLNP-Au-
CB group showed less severe inflammatory cell infiltration and
more reconstructed hair follicles. Moreover, the MSPLNP-Au-
CB group gave a dramatically lower level of the blood
inflammatory factor IL-6 and IL-1β than the other two groups
but a similar level to the mice in the blank control group
(Figure 8f,g), confirming the good therapeutic effect on the
infected mice in the MSPLNP-Au-CB group.
The mouse model exhibited no obvious changes in the body

weight during the MSPLNP-Au-CB 10 day treatment,
indicating low toxicity of the MSPLNP-Au-CB nanozyme
(Figure S24). The relative PL intensity of isolated organs
showed the highest MSPLNP-Au-CB in the liver and the
spleen because of the strong phagocytosis of the reticuloendo-
thelial system but was negligible in other organs (Figure S25).
All these results demonstrate that the MSPLNP-Au-CB
nanozyme can be effectively activated in the MRSA bacterial
infection abscesses with multiple drug resistance bacterial
killing capability in vivo.

■ CONCLUSIONS
We have developed a stable pH-responsive persistent
luminescence nanozyme (MSPLNP-Au-CB) for targeted
killing of H. pylori. The developed nanozyme gets the merit
of pH-responsive, oxidase- and peroxidase-like dual nanozyme
activity to produce bactericidal ROS. With the integration of
red LED light-renewable long persistent luminescence of
PLNP and selective bacterial targeting capability of CB, this
nanozyme allows for targeted luminescence imaging and
effective bacterial inactivation toward H. pylori in extreme
gastric acid environments and MRSA in common slightly

Figure 6. Characterization of the harmful effect of MSPLNP-Au-CB to the intestinal symbiotic microbe. (a) Alpha diversity analysis for the
intestinal microbial richness. Data were calculated as means ± s.d. (n = 5). P values were calculated by the Student’s two-sided test (***p < 0.001).
(b) Beta diversity analysis for the intestinal microflora by principal coordinates analysis. (c) Community heatmap analysis on the genus level of the
intestinal contents in different treatment groups.
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acidic environments but has a negligible harmful effect on
intestinal symbiotic bacteria and normal tissues. Such a pH-
activatable nanozyme contains no antibiotics and shows
promise to overcome the critical challenges in selective therapy
of drug-resistant bacterial infection even at specific environ-
ments.

■ EXPERIMENTAL SECTION
Synthesis of MSPLNP. The used PLNP Zn1.2Ga1.6Ge0.2O4:Cr

3+

was synthesized according to our previous work.43,51 TEA (68 mg)
was dissolved in deoxygenated water (25 mL) at 80 °C. Then, PLNP
(80 mg), NaSal (42 mg), and CTAB (380 mg) were added to the
solution of TEA. The mixture was stirred for 1 h, and TEOS (500 μL)
was added. Thirty, 60, 90, and 120 min later, APTES was added to the
solution four times (20 μL each time). The mixture was kept stirring
for 2 h. The product was collected by centrifugation and washed three
times with ethanol. Subsequently, CTAB was extracted with ethanol
(50 mL of ethanol containing 3 mL of 37% HCl) for 6 h (three times)
at 70 °C. The resulting MSPLNP was washed with ethanol and water
and collected by centrifugation and dried under vacuum.
Preparation of MSPLNP-Au.MSPLNP (5 mg) were dispersed in

distilled water (2 mL) under sonication for 10 min followed by the
addition of HAuCl4 solution (40 μL, 20 mmol L−1). After 1 h of
stirring, freshly prepared NaBH4 (10 μL, 60 mmol L−1) was added

into the above solution, and the resulting suspension was stirred for
another 1 h. The resulting MSPLNP-Au was washed with water,
collected by centrifugation, and dried under vacuum.

Oxidase- and Peroxidase-like Property of MSPLNP-Au.
Certain amounts of MSPLNP-Au and TMB (4 μL, final concentration
of 800 μmol L−1) were added into acetate buffer solution (200 μL, 25
mmol L−1, pH 4.0). The mixture solution was reacted at 37 °C for 30
min and centrifuged to get the supernatant for the measurement of
UV−vis absorption spectra. TMB was replaced by other organic dyes
ABTS and OPD to further confirm the oxidase-like property of
MSPLNP-Au in the same way. The peroxidase-like property of
MSPLNP-Au was evaluated in the same way with the addition of 12.5
μL of H2O2 (final concentration of 50 mmol L−1). Data were
calculated as means ± s.d. (n = 3).

The same method was applied to evaluate the oxidase- and
peroxidase-like property of MSPLNP-Au in the SGF and the SIF by
replacing acetate buffer solution with SGF or SIF solution (200 μL).

Luminescence Imaging of MSPLNP-Au-CB in an H. pylori-
Infected Mouse Model. The H. pylori-infected mice were
administrated with MSPLNP (100 μL, 2 mg mL−1) and MSPLNP-
Au-CB (100 μL, 2 mg mL−1) by oral gavage. Then, the luminescence
distribution of MSPLNP-Au-CB in the mouse stomach was
monitored at designated time points. The distribution of the
luminescence of MSPLNP was monitored for comparison.

Figure 7. Performance of MSPLNP-Au-CB for targeted PL imaging and killing of E. coli, S. aureus, and MRSA. Relative viability for E. coli (a), S.
aureus (b), and MRSA (c) after incubating with MSPLNP-Au and MSPLNP-Au-CB. Data were calculated as means ± s.d. (n = 3). (d) Relative
bactericidal activity of MSPLNP-Au-CB (30 μg mL−1) against bacteria under an acidic environment (pH 5.5) and a normal physiological
environment (pH 7.0). Data were calculated as means ± s.d. (n = 3). (e) Photos of E. coli, S. aureus, and MRSA colonies treated with MSPLNP-Au-
CB (30 μg mL−1) at different pH values. (f) Representative LCSM images of E. coli, S. aureus, and MRSA treated with MSPLNP-Au-CB (30 μg
mL−1). Scale bar: 10 μm. (g) SEM images of E. coli, S. aureus, and MRSA before and after MSPLNP-Au-CB treatment. Scale bar: 1.0 μm.
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Luminescence Imaging of MSPLNP-Au-CB in an MRSA-
Infected Subcutaneous Abscess Mouse Model. MSPLNP and
MSPLNP-Au-CB (100 μL, 2 mg mL−1) were intravenously injected
into anesthetized MRSA-infected mice. The luminescence of
MSPLNP-Au-CB was monitored at designated time points. The
distribution of the luminescence of MSPLNP was monitored for
comparison.
MSPLNP-Au-CB Targeted Treatment for H. pylori Infection

In Vivo. The established H. pylori-infected mice (n = 15) were
randomly divided into three treatment groups (five mice for each
group) to receive PBS, MSPLNP-Au-CB, or triple therapy OAC
(omeprazole, amoxicillin, and clarithromycin) by oral administration.
The performance of triple therapy was evaluated according to Zhang
et al.32 The triple therapy group received antibiotics once daily for 6
consecutive days. The MSPLNP-Au-CB group received only one
gavage of MSPLNP-Au-CB (100 μL, 2 mg mL−1). The group of mice
treated with PBS was used as a negative control. After the 6 day
treatment, the three groups of mice were sacrificed, and the stomachs
were excised from the abdominal cavity for bacterial colonization and
tissue section staining. The intestines of the mice were also collected
to reveal the effect of MSPLNP-Au-CB on the symbiotic bacteria. The
intestine symbiotic bacteria were determined by a quantitative real-

time PCR method.52,53 The primer sequences for quantitative real-
time PCR are listed in Table S3.

MSPLNP-Au-CB for Selective In Vivo Treatment of an
MRSA-Infected Subcutaneous Abscess Mouse Model. After 24
h of MRSA infection, the mice (n = 15) were randomly divided into
three groups (five mice for each group): the PBS group, MSPLNP
group, and MSPLNP-Au-CB group. Normal mice were used as a
blank control group for comparison. The mice in the PBS group and
the MSPLNP-Au-CB group were intravenously injected with PBS
(100 μL) and MSPLNP-Au-CB (100 μL, 2 mg mL−1), respectively.
All mice were sacrificed after the 10 day treatment, and IL-6 and IL-
1β in the serum of mouse blood in the four groups studied were
determined according to our previous work.43 The skin tissues and
major organs were fixed in a 4% formaldehyde solution for H&E
staining.
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