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A B S T R A C T   

Carbendazim (CBZ) has generated significant attention due to potential harm to human health, thus developing a 
simple and economy-friendly approach for determining CBZ is vital. Herein, Cerium metal-organic framework 
(Ce-MOF) and polyaniline (PANI) were composited under mild condition and modified on carbon cloth (CC) to 
fabricate an electrochemical sensor based on Ce-MOF@PANI/CC for fast and sensitive determination of CBZ. 
Rod-shaped Ce-MOF facilitated the dispersion of PANI, while the doping of PANI improved conductivity of Ce- 
MOF to amplify detection signal. Moreover, the modification of Ce-MOF@PANI on CC increased the electro
chemical active area of CC by 2.78 times. Under optimized conditions, the method demonstrated a linear range of 
0.1–80 μM and a detection limit of 12.6 nM. Additionally, the response value of the sensor to CBZ still maintained 
94.32% of the initial value after 15 days. It also had good reproducibility and anti-interference. The sensor was 
utilized for detecting CBZ in fruit (apple, pear), vegetables (tomato, cucumber), and water (lake, tap water) with 
recovery of 92.31%–105.47% consistent with those of high-performance liquid chromatography.   

1. Introduction 

Carbendazim (CBZ) is extensively utilized for the prevention of 
various pathogens in fruit and vegetables [1,2]. The residue of CBZ 
easily posed serious effects on humans because of the stable structure of 
the benzimidazole ring [3]. It could disrupt the endocrine system and 
induce cancer [4,5]. CBZ was detected with a maximum reaching 1396 
ng/L in watercourse and was also discovered in fruit and vegetables 
[6–8]. In International Codex Alimentarius Commission, maximum 
residue limits for CBZ have been regulated with the range of 0.05–20 
mg/kg in crops [9]. Therefore, the accurate determination of CBZ is 
extremely significant to both environmental preservation and human 
health. 

Many analytical methods, such as liquid chromatography-mass 
spectrometry (LC-MS) [10], high-performance liquid chromatography 
(HPLC) [2], capillary electrophoresis [11], and immunoassay [12] have 
been applied to the determination of CBZ. These methods need time- 
consuming pre-treatments and high cost [13]. Electrochemical 
method, known for its easy operation, low cost, and rapid response, has 
been extensively employed in the analysis of heavy metal ions, food 

additives, bioactive molecules, and environmental pollutants [14–17]. It 
has potential to be utilized for the rapid detection of CBZ. Electrode 
substrates and electrode modification materials are key factors to 
enhance the sensitivity of this method. Previous electrode substrate 
detecting CBZ focused on traditional glassy carbon electrode (GCE). 
Flexible electrode substrates have higher conductivity compared with 
GCE and have generated increasing research interest in electrochemical 
sensing [18]. Carbon cloth (CC), as a flexible electrode easily prepared, 
possessed commendable conductivity along with substantial specific 
surface area. CC was modified by adding functional materials to further 
improve sensor sensitivity. Modification materials are also a key to 
enhance the sensitivity of electrochemical determination. 

Metal-organic frameworks (MOFs), a class of emerging porous 
nanomaterials, have garnered considerable attention in the field of 
electrochemistry [19]. Singh et al. [20] conducted the synthesis of Cu- 
MOF to enable the sensitive detection of Hg2+ in canned tuna fish and 
tap water. Mahmoudi et al. [21] fabricated an electrochemical biosensor 
based on Ce/UiO-66@MWCNTs for detecting organophosphate pesti
cide in cabbage and spinach. Cerium (Ce) stands out as a highly abun
dant rare earth element and has been applied to synthesize various 
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functional nanomaterials [22,23]. Notably, Ce-MOF exhibited milder 
synthesis condition relative to other MOFs [24]. The higher coordina
tion number and variable valence-state of Ce make Ce-MOF have 
excellent redox ability. Moreover, Ce-MOF had the potential to promote 
the enrichment of analytes through hydrogen bonding interaction and 
π-π stacking [25]. To further improve electron transfer rates enhancing 
the electrochemical performance of Ce-MOF, it was worth utilizing a 
functional material with easy synthesis and superior performance for 
fabricating composite. Tu et al. [26] fabricated reduced graphene oxide- 
encapsulated Ce-MOF to determine dichlorophen. Wang et al. [27] 
synthesized 2D carbon nanotube@Ce-MOF nanosheet hybrid materials 
for the effective detection of nitrites. Chen et al. [28] devised a sensor 
utilizing Ce-MOF/Ti3C2TX MXene composite for electrochemical detec
tion of L-Tryptophan. Polyaniline (PANI), a conductive polymer, holds 
great potential in various applications owing to its advantageous attri
butes including high conductivity, low cost, and remarkable redox 
properties. Furthermore, PANI can be conveniently synthesized at room 
temperature, distinguishing it from alternative functional materials like 
noble metal nanoparticles and carbon nanotubes [29–31]. PANI with the 
extended π conjugated system was doped to Ce-MOF and conducive to 
amplifying detection signal. It could be expected that the materials 
formed by the composite of Ce-MOF and PANI could take on better 
electrochemical properties. 

Herein, Ce-MOF and PANI were synthesized by mild and simple 
hydrothermal method and chemical oxidative polymerization method 
individually. The raw materials required for their production were 
readily accessible, which was economy-friendly. Ce-MOF@PANI com
posite was fabricated using a straightforward ultrasonic method and 
modified on CC to prepare Ce-MOF@PANI/CC electrode for sensitive 
electrochemical sensing of CBZ via differential pulse voltammetry 
(DPV). The methodology evaluation and catalytic mechanism of deter
mining CBZ were further explored by cyclic voltammetry (CV) and DPV 
after analyzing the characterization and electrochemical properties of 
Ce-MOF@PANI. Additionally, the developed sensor demonstrated suc
cessful application in practical analysis (fruit, vegetables, and water). 

2. Experiment 

2.1. Fabrication of Ce-MOF@PANI 

2.1.1. Synthesis of PANI and Ce-MOF 
PANI was obtained using a chemical oxidation polymerization pro

cedure [29]. Typically, aniline (0.25 M) was put into a solution of dilute 
hydrochloric acid (20 mL) while being continuously stirred for 30 min. 
Subsequently, 0.2 M ammonium persulfate in 30 mL dilute hydrochloric 
acid was gradually added to the solution obtained earlier. Following 12 
h of constant stirring, the resultant mixture yielded green precipitate, 
which was centrifuged at 10000 rpm for 8 min. The precipitate was then 
subjected to a washing process using ethanol and water. Ultimately, the 
precipitate was dried for 12 h at 60℃ to obtain PANI. 

Ce-MOF was prepared using a hydrothermal approach with slight 
modifications, following the procedure described in the literature [32]. 
Trimesic acid (0.22 M) and Ce(NO3)3⋅6H2O (0.22 M) were gradually 
added to a mixture of water/ethanol (v/v = 3:1, 45 mL) under stirring at 
60℃ for 1 h. A significant quantity of white precipitate was obtained 
through centrifugation at a speed of 10000 rpm for 5 min, with the 
purpose of isolating the precipitate of Ce-MOF. Subsequently, the pre
cipitate underwent washing with ethanol and water to eliminate resid
ual reactants, followed by drying for 12 h at 60℃. 

2.1.2. Synthesis of Ce-MOF@PANI 
A straightforward method was conducted to synthesize Ce- 

MOF@PANI. Ce-MOF (20 mg) and PANI (10 mg) were put into 10 mL 
water/ethanol mixture. The resulting mixture was subjected to ultra
sonic mixing for 1 h, which was then centrifuged at 10000 rpm for 5 min 
to obtain Ce-MOF@PANI precipitate. The precipitate underwent 

washing with ethanol and water and was subsequently dried for 12 h at 
60℃. 

2.2. Preparation of Ce-MOF@PANI/CC 

Commercial CC was cut into rectangular pieces (1.5 × 1.0 cm2). CC 
was ultrasonically cleaned in dilute nitric acid for 30 min before 
modification. Then ultrasonically clean for 5 min in acetone, anhydrous 
ethanol, and water, respectively. CC was then dried at 60℃ in prepa
ration for use. Subsequently, 18 μL Ce-MOF@PANI (1 mg/mL) water/ 
ethanol solution was dripped on the center of CC and dried at 60℃. Ce- 
MOF@PANI/CC was fabricated for use. 

2.3. Electrochemical experiments 

CV and electrochemical impedance spectroscopy (EIS) were carried 
out to evaluate the electrochemical characteristics of the electrodes in 
1.0 mM [Fe(CN)6]3-/4-. CV had a potential ranging from -0.20 V to 0.60 
V. The EIS measurements were performed with frequency range of 0.01 
Hz to 100000 Hz, while the amplitude was 5 mV. CBZ was determined 
via DPV scanning with the range of 0.5–0.9 V by using a 0.05 V 
amplitude and a 0.05 s pulse width. The electrolyte used for the elec
trochemical experiments was phosphate buffer solution (PBS, 0.1 M) 
with pH 7.0. 

3. Results and discussion 

3.1. Construction of Ce-MOF@PANI/CC electrochemical sensor for 
detecting CBZ 

The fabrication route of Ce-MOF@PANI was illustrated in Scheme 1A 
and the electrochemical sensor based on Ce-MOF@PANI/CC for 
detecting CBZ was shown in Scheme 1B. CBZ has the benzimidazole ring 
structure with molecular diameter of about 1.1 nm (Fig. S1C). Ce was 
chosen as the central metal to improve the redox ability of Ce-MOF due 
to the variable valence-state [24]. Owning to the limited electron 
transfer rate of Ce-MOF, PANI, a conductive polymer with the extended 
π conjugated system, was compounded to Ce-MOF to further enhance 
the conductivity of Ce-MOF amplifying detection signal. Ce-MOF@PANI 
with a pore size of approximately 3.67 nm (Fig. S1B) was potentially 
suited for promoting the accumulation of CBZ on the electrode surface 
through pore-size matching effect and π-π stacking. In summary, the 
composite of Ce-MOF and PANI was modified on CC to prepare elec
trochemical sensing platform based on Ce-MOF@PANI/CC to detect CBZ 
in fruit, vegetables, and water. 

3.2. Characterization of Ce-MOF@PANI 

3.2.1. Morphology characterization 
Scanning electron microscope (SEM) was conducted to explore the 

morphology of PANI, Ce-MOF, and Ce-MOF@PANI. As depicted in 
Fig. S2A, Ce-MOF was typically rod-shaped like natural wheatears with 
lengths from 2 to 5 μm [32]. PANI exhibited nanofibers structure 
consistent with findings documented in prior literature (Fig. S2B) [33]. 
Fig. 1C showed that the surface of rod-shaped Ce-MOF was decorated 
with nanofibers and indicated the successful synthesis of Ce- 
MOF@PANI. The morphological analysis of the composite revealed 
that the incorporation of PANI did not induce any alterations in the 
morphology of Ce-MOF, while Ce-MOF contributed to a better disper
sion of PANI and further increased active sites of the composite. 

The surface morphology of the pretreated CC and Ce-MOF@PANI/ 
CC were further characterized by SEM. As shown in Fig. 1A, CC was 
made up of interlaced carbon fibers without impurities. As Fig. 1B dis
played, CC was modified with Ce-MOF@PANI whose morphology was 
further illustrated in Fig. 1C, revealing the successful fabrication of Ce- 
MOF@PANI/CC electrode. 
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3.2.2. Functional groups and chemical bonds 
The utilization of flourier transform infrared spectra (FT-IR) was 

carried out to investigate the functional groups and chemical bonds of 
PANI, Ce-MOF, and Ce-MOF@PANI. As the FT-IR spectrum illustrated 
(Fig. S3A), the characteristic peak of Ce-O bond appeared at 530 cm-1 

[34]. The peak of 3400 cm-1 was regarded as the O-H stretching vibra
tion originating from the water molecule, demonstrating Ce-MOF was 
prepared successfully [25]. Furthermore, the composite exhibited 
characteristic peaks at 1610–1560 cm-1 and 1435–1370 cm-1, identified 
as the asymmetric stretching vibrations and the stretching vibrations 
belonged to the carboxylate ions of the ligand, which was consistent 
with absorption spectrum of Ce-MOF [35]. The strong peaks of 1570 
cm-1 and 1482 cm-1 were regarded as the C=N and C=C stretching vi
brations, which were associated with the quinone and benzene rings 
present in PANI [36]. Moreover, the presence of the benzenoid unit 
could be inferred from the identification of characteristic peaks of C-N 

stretching vibration located at 1306 cm-1. Additionally, the character
istic peak of 1240 cm-1 and 1145 cm-1 was indicative of the stretching 
mode of the C-H from benzenoid and quinoid rings [37]. The FT-IR 
spectrum of the Ce-MOF@PANI composite also demonstrated the 
characteristic peaks of PANI (Fig. S3A). Combined with the above re
sults, Ce-MOF@PANI was successfully compounded. 

3.2.3. Crystalline structures 
The crystalline structures of PANI, Ce-MOF, and Ce-MOF@PANI 

were characterized via X-ray diffraction (XRD). As Fig. S3B illustrated, 
the diffraction peak observed at 25.10◦ was consistent with the (200) 
crystal plane in PANI, originating from the periodicity which was par
allel to the polymer chains [29]. The main diffraction peaks sharp and 
clear appeared at 10.15◦, 13.28◦, and 17.32◦ demonstrating the excel
lent crystallinity of Ce-MOF in accord with the published literature [32]. 
Moreover, the characteristic diffraction peaks of the composite showed 

Scheme 1. (A) Construction of Ce-MOF@PANI/CC and (B) electrochemical approach for detecting CBZ.  

Fig. 1. SEM images of (A) bare CC, (B) Ce-MOF@PANI/CC, and (C) Ce-MOF@PANI.  
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the Ce-MOF characteristic and expressed that the doping of PANI had 
not changed the crystalline structure of Ce-MOF. 

3.2.4. Chemical states and elemental compositions 
The utilization of X-ray photoelectron spectroscopy (XPS) was 

employed to investigate the chemical states and elemental compositions 
of Ce-MOF@PANI. As shown in Fig. S4, the composite had elements C, 
Ce, O, and N, conforming successful synthesis of Ce-MOF@PANI. The 
three deconvoluted characteristic peaks of 288.7 eV (O-C-O), 286.7 eV 
(C-N), and 284.8 eV (C-C) were observed in high resolution C 1 s spectra 
(Fig. 2A) [38]. Fig. 2B indicated that the XPS spectra of Ce 3d contained 
two multiplets, associated with 3d5/2 and 3d3/2 core holes from the spin- 
orbit split [39]. The presence of two peaks at 904.1 eV and 885.4 eV in 
the XPS spectra was attributed to the characterization of Ce3+ in the 
composite. Additionally, the four peaks at 882.3 eV, 887.0 eV, 900.6 eV, 
and 906.8 eV were found to be associated with Ce4+. These findings 
suggested that Ce in Ce-MOF@PANI exhibited a mixed valence-state 
[24]. The XPS spectra of O 1 s exhibited peaks of 531.6 eV (Ce-O) and 
532.2 eV (C=O), as shown in Fig. 2C [37]. The peaks of N 1 s of XPS 
spectra were centered respectively at 399.2 eV and 402.3 eV matching 
with undoped imine units -N= and -NH- in Fig. 2D [40]. 

3.2.5. Specific surface area 
The measurement of specific surface area for Ce-MOF and Ce- 

MOF@PANI was conducted using Nitrogen adsorption-desorption iso
therms. The isotherms of Ce-MOF and Ce-MOF@PANI were an IV-type 
curve typically, as illustrated in Fig. S1A, B [40]. The specific surface 
area for Ce-MOF was 33.35 m2/g and Ce-MOF@PANI was 44.11 m2/g, 
demonstrating the specific surface area of Ce-MOF was slightly 
improved due to the doping of PANI. 

3.3. Electrochemical characterizations of Ce-MOF@PANI/CC 

The electrochemical properties of bare CC and other different elec
trodes containing Ce-MOF/CC, PANI/CC, and Ce-MOF@PANI/CC were 

investigated by CV in 1.0 mM [Fe(CN)6]3-/4- solution. Ce-MOF/CC 
exhibited a higher peak current (312.1 μA) compared to bare CC 
(261.8 μA) since Ce-MOF had good redox ability, as shown in Fig. 3A 
[35]. CC modified with PANI showed a further increase of current 
(570.4 μA), which was attributed to the ability of partial oxidized phase 
states of PANI to enhance the electrical conductivity [29]. Notably, Ce- 
MOF@PANI/CC demonstrated the highest response current (784.1 μA), 
implying the synergistic effect between Ce-MOF and PANI could 
improve charge transfer capability. 

EIS can characterize the resistive properties, and further compare the 
difference in conductivity between different electrodes. The diameter of 
the semicircle of Nyquist plots exhibits a positive correlation with the 
charge transfer resistance (Rct), standing for the electron transfer effi
ciency [41]. The Rct of different electrodes decreased due to the drop 
coating of Ce-MOF, PANI, and Ce-MOF@PANI compared to bare CC, as 
illustrated in Fig. 3B. In particular, the Ce-MOF@PANI/CC had a mini
mum Rct, demonstrating a terrific electron transfer process. 

The electrochemical active surface area of different electrodes, 
including bare CC, Ce-MOF/CC, PANI/CC, and Ce-MOF@PANI/CC were 
investigated by analyzing the peak current at various scan (0.02–0.2 V/ 
s) in 1.0 mM [Fe(CN)6]3-/4- solution (Fig. S5). With the increasing scan 
rate, the Ipa and Ipc of Fe2+/Fe3+ redox couple on bare CC, Ce-MOF/CC, 
PANI/CC, and Ce-MOF@PANI/CC gradually expanded. The square root 
of the scan rate (v1/2) was positively correlated to the peak currents of 
Ipa and Ipc, implying the diffusion condition governed the electro
chemical reaction of Fe2+/Fe3+ [27]. Particularly, the slope of Ipa and 
Ipc to v1/2 of Ce-MOF@PANI/CC was the largest based on the fitting 
equation (Fig. S5H). The calculation of the effective active surface area 
of different modified electrodes was carried out utilizing the Randles- 
Sevcik equation, which was shown in Eq. (1) [42]: 

Ip = 2.69 × 105ACD1/2n2/3v1/2 (1)  

It was calculated that the electrochemical active surface area for bare CC 
was 2.71 cm2, Ce-MOF/CC was 2.98 cm2, PANI/CC was 7.11 cm2, and 
Ce-MOF@PANI/CC was 10.24 cm2. Ce-MOF/CC exhibited a slight 

Fig. 2. XPS survey spectra Ce-MOF@PANI of (A) C 1 s, (B) Ce 3d, (C) O 1 s, and (D) N 1 s.  

R. Zhou et al.                                                                                                                                                                                                                                    



Microchemical Journal 197 (2024) 109862

5

increase in electrochemical active surface area when compared to bare 
CC. Moreover, the modification of PANI further increased the electro
active area by 2.78 times, proving that PANI and Ce-MOF synergistically 
enhanced conductivity of the composite-modified electrodes and facil
itated electron transfer. 

3.4. Electrochemical response to CBZ on different electrodes 

The electrochemical response to CBZ on bare CC, Ce-MOF/CC, PANI/ 
CC, and Ce-MOF@PANI/CC electrodes were displayed in Fig. 3C. The 
electrochemical response of bare CC to CBZ was the smallest (46.34 μA). 
With the modification of Ce-MOF, the response for CBZ increased to 
55.34 μA, attributed to the variable valence-state of Ce possessing good 
redox ability [39]. Moreover, the doping of PANI with high electrical 
conductivity further promoted efficient electrochemical oxidation of 
CBZ to amplify detection signal and made the Ce-MOF@PANI/CC 
electrode have the largest current response (75.70 μA). 

The possible interaction between CBZ and Ce-MOF@PANI was 
investigated by exploring the fluorescence response of CBZ, Ce- 
MOF@PANI, and Ce-MOF@PANI + CBZ. As seen from Fig. S6A, the 
fluorescence intensity of Ce-MOF@PANI slightly decreased after adding 
CBZ, indicating π-π stacking existed between CBZ and Ce-MOF@PANI 
resulting in fluorescence quenching [43]. The functional groups of 
CBZ, Ce-MOF@PANI and Ce-MOF@PANI + CBZ were explored 
employing FT-IR (Fig. S6B). The FT-IR spectrum analysis revealed that 
both three exhibited a cluster of peaks within the 1300 to 1500 cm-1 

range, indicative of the presence of the aromatic compounds. The FT-IR 
spectrum of Ce-MOF@PANI + CBZ demonstrated that no new com
pound was formed since the addition of CBZ did not yield any significant 
emergence of novel functional groups [43]. The UV-vis absorption 
spectra of CBZ and Ce-MOF@PANI + CBZ were identical (Fig. S6C), 
which also suggested the absence of any new compound formation be
tween Ce-MOF@PANI and CBZ [5]. These aforementioned results above 
indicated the presence of the benzene ring from Ce-MOF@PANI and 

CBZ, which suggested that Ce-MOF@PANI could enrich more CBZ via 
π-π stacking. 

3.5. Study on electrochemical reaction mechanism of CBZ 

The CV response of Ce-MOF@PANI/CC electrode to CBZ was inves
tigated by varying the scan rate (0.04–0.2 V/s). The peak current 
response to CBZ progressively enlarged as the scan rate increased 
(Fig. S7A). The correlation between the scan rate and the peak current 
was found to be linear (Fig. S7A), with the equation I = -89.651v +
0.412 (R2 = 0.9889). The linear correlation suggested that the adsorp
tion process governed the electrochemical reaction process of CBZ at the 
Ce-MOF@PANI/CC electrode surface. The linear regression equation, 
Epa = 0.0115lnv + 0.762 (R2 = 0.9868), was derived to demonstrate a 
good linear correlation between potential and logarithms of scan rates in 
Fig. S7B [44]. By employing the Butler-Volmer equation, which was 
shown in Eq. (2) [45]: 

Epa = E0 − (RT/αnF)ln(RTks/αnF)+ (RT/2αnF)lnν (2)  

n representing the electron transfer number was calculated by taking the 
slope of the Epa-lnv plot, which was equal to RT/2αnF, where α stands 
for the electron transfer coefficient, F, R, and T are the constants, and 
Epa represents the potential [45]. Hence, it was calculated that there 
were roughly 2 electrons transferred of CBZ on the Ce-MOF@PANI/CC 
electrode surface. Additionally, the potential of CBZ at different pH 
was studied (Fig. S8). A strong linear correlation was observed between 
the peak potential of CBZ and pH, with the linear equation Epa =
-0.0640pH + 1.156 (R2 = 0.9871), indicating the involvement of pro
tons in the oxidation process, as depicted in Fig. S8B [45]. The measured 
slope of -64.0 mV/pH closely approximated the theoretical slope of 
-59.1 mV/pH, exposing that the numbers of protons and electrons 
transferred were equal in the oxidation of CBZ [46]. Based on the 
aforementioned results, it could be deduced that the electrochemical 

Fig. 3. (A) CV (scan rate: 0.04 V/s) and (B) EIS curves of bare CC, Ce-MOF/CC, PANI/CC, and Ce-MOF@PANI/CC in 1.0 mM [Fe(CN)6]3-/4- solution; (C) DPV 
responses to CBZ on bare CC, Ce-MOF/CC, PANI/CC, and Ce-MOF@PANI/CC electrodes. 
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oxidation process of CBZ on the Ce-MOF@PANI/CC electrode involved 
the transfer of two protons and two electrons (Fig. S9) [47]. 

3.6. Optimal conditions for electrochemical detection 

The pH of PBS significantly influences the electrochemical oxidation 
of CBZ. The optimization of pH ranging from 4.0 to 9.0 was investigated 
using DPV, as displayed in Fig. S8. The peak current gradually decreased 
from 7.0 to 9.0, possibly ascribed to CBZ getting solidified in acidic 
condition and degraded under alkaline environment, after reaching the 
highest peak current of CBZ at pH 7.0 [48]. Consequently, pH 7.0 was 
deemed to be the most appropriate pH in the subsequent experiments. 

The correlation between the peak current response to CBZ and 
different adsorption time was investigated via DPV. The peak current of 
CBZ gradually improved as the adsorption time increased from 0 to 180 s 
(Fig. S10), attributed to the enrichment of CBZ on Ce-MOF@PANI/CC 
surface. Afterwards, as a result of the saturation of CBZ adsorption, 
the peak current brought about a slight change with the prolongation of 
adsorption time from 180 to 240 s on the electrode surface (Fig. S10). 
Therefore, the adsorption time of 180 s was deemed to be the most 
favorable time for adsorption. 

3.7. Method validation 

3.7.1. Electrochemical detection of CBZ 
The electrochemical detection performance of CBZ based on Ce- 

MOF@PANI/CC sensor was investigated under optimal conditions in 
different concentrations with a range of 0.1–80 μM. DPV was employed 
to analyze the correlation between the peak current and different CBZ 
concentrations. Fig. 4A illustrated the impact of varying CBZ concen
trations on the peak current. Different CBZ concentrations and the peak 
current exhibited a positive correlation. As shown in Fig. 4B, this cor
relation was represented by the linear equation I = -7.205C + 0.604 (R2 

= 0.9973). Through analytical calculations, the low limit of detection 
(LOD) was calculated to be up to 12.6 nM (S/N = 3) [49]. 

The comparison between the performance of the Ce-MOF@PANI/CC 
and other electrodes were presented in Table 1. Ce-MOF@PANI/CC had 
a lower detection limit and a broader linear range to detect CBZ. In 
addition, the remarkable electrochemical characteristics of Ce- 
MOF@PANI were ascribed to the exceptional redox ability and con
ductivity from Ce-MOF and PANI. The pore size of synthesized Ce- 
MOF@PANI surpassed the dimensions of CBZ (Fig. S1), thereby facili
tating the effective enrichment of CBZ. Ce-MOF@PANI/CC was easy to 
fabricate and their excellent electrochemical active surface area ob
tained from Ce-MOF@PANI made it suitable for detecting CBZ. 

3.7.2. Reproducibility, stability, and anti-interference studies 
8 electrodes were fabricated to measure CBZ to evaluate the 

reproducibility. Fig. S11A demonstrated that 8 electrodes displayed a 
comparable peak current, accompanied by a relative standard deviation 
(RSD) of 3.22%, demonstrating Ce-MOF@PANI/CC had excellent 
reproducibility. Furthermore, the long-term storage stability of Ce- 
MOF@PANI/CC was investigated by monitoring the peak current 
response to CBZ over 15 days. As observed in Fig. S11B, the peak current 
response to CBZ at Ce-MOF@PANI/CC electrode surface gradually 
decreased and maintained approximately 94.32% of its original value 
after 15 days, indicating excellent long-term storage stability of elec
trode. Signal variation of the peak current response to CBZ was moni
tored in the presence of 10-fold concentration of K+, Na+, Mg2+, Al3+, 
Ca2+, Cl-, SO4

2-, NO3
- , glucose, urea, ascorbic acid, glyphosate, 

trichlorfon, dimethoate, imidacloprid, dinotefuran, and thiamethoxam 
in order to verify the selectivity of Ce-MOF@PANI/CC sensor (Fig. S12). 
The aforementioned interferences had no impact on the detection of 
CBZ, as evidenced by the RSD of 3.06%. These results suggested that the 
sensor exhibited a strong capability to resist interferences. 

3.8. Analytical application 

The fabricated sensor was conducted to measure CBZ in fruit and 
vegetables samples (apple, pear, tomato, and cucumber) and water 
samples (lake, tap water) to investigate the effectiveness of the devel
oped sensor. As Table 2 displayed, the observed recovery ranged from 
92.31% to 105.47%, and the RSDs were controlled within 7.15% in the 
actual samples. These above results indicated that Ce-MOF@PANI/CC 
sensor had the practical application potential for determining CBZ. 
Moreover, the aforementioned results were compared with those ob
tained from HPLC to further evaluate the accuracy of the Ce- 
MOF@PANI/CC sensor (Fig. S13). The recovery of the electrochemical 
experimental detection was basically the same as those of the HPLC with 
the recovery ranging from 94.23% to 104.62% and the RSDs within 
7.32% (Table 2). 

Fig. 4. (A) The curves of DPV in different CBZ concentrations at Ce-MOF@PANI/CC sensor; (B) The linear correlation between different CBZ concentrations and the 
peak current. 

Table 1 
Comparison of the Ce-MOF@PANI/CC electrode for the detection of CBZ with 
some other electrodes.  

Electrode Linear range (μM) LOD (nM) References 

NP-Cu/RGO/GCE 0.5–30 90 [50] 
La-Nd2O3/CPE 0.08–50 27 [51] 

MBC@CTS/GCE 0.1–20 20 [52] 
SiO2/MWCNT/GCE 0.2–4 56 [53] 

MWCNT/GCE 0.256–3.11 54.9 [54] 
CNTs-MAS4.8/GCE 0.1–2 40 [55] 
Ce-MOF@PANI/CC 0.1–80 12.6 This work  
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4. Conclusion 

To summarize, an economy-friendly and simple method was devel
oped to fabricate an electrochemical sensing platform based on Ce- 
MOF@PANI/CC for sensitive electrochemical determination of CBZ. 
Ce-MOF could contribute the dispersion of PANI, while PANI further 
increased conductivity of Ce-MOF. The combination of Ce-MOF and 
PANI enhanced electrochemical active surface area. Ce-MOF@PANI 
promoted the absorption of CBZ through pore-size matching effect and 
π-π stacking and improved catalytic oxidation of CBZ. The developed 
method exhibited commendable anti-interference, reproducibility, and 
stability. It had potential for application to determine CBZ in food and 
environment. 
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